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Abstract

Many papers and articles attempt to define or even quan-
tify privacy, typically with a major focus on anonymity. A
related research exercise in the area of evidence-based trust
models for ubiquitous computing environments has given us
an impulse to take a closer look at the definition(s) of pri-
vacy in the Common Criteria, which we then transcribed
in a bit more formal manner. This lead us to a further re-
view of unlinkability, and revision of another semi-formal
model allowing for expression of anonymity and unlinkabil-
ity – the Freiburg Privacy Diamond. We propose new means
of describing (obviously only observable) characteristics of
a system to reflect the role of contexts for profiling – and
linking – users with actions in a system. We believe this
approach should allow for evaluating privacy in large data
sets.

1. Introduction

This paper outlines the development of our appreciation
of privacy concepts that started with a research exercise on
data mining in evidential data for evidence-based reputation
systems. The novel idea of evidence-based reputation (or
trust) systems is that such systems do not rely on an objec-
tive knowledge of user identity [1, 2, 11]. One has instead to
consider possible privacy infringements based on the use of
data (evidence) about previous behaviour of entities in the
systems. We provide a brief introduction to evidence-based
trust/reputation systems, as well as to the privacy issues, ad-
dressing the common problem of many papers that narrow
the considerations of privacy to anonymity only.

The paper is structured in the following way – remaining
parts of this introductory section provide a brief overview

of issues related to evidence-based systems, Common Cri-
teria and Freiburg Privacy Diamond models, motivation for
our research, and a simple example used to illustrate the
use of privacy models. Section two then presents some of
the Common Criteria concepts used in the following dis-
cussions, and also outlines the Common Criteria approach
to privacy issues (families), together with a discussion of
unlinkability – the most complex property/quality of pri-
vacy. The third section presents the Freiburg Privacy Di-
amond – a semi-formal model allowing for expression of
anonymity and unlinkability, focussing on the mobile envi-
ronment. Section four then examines the role of contexts
in these two approaches to modelling privacy. This leads to
the fifth section that proposes using contextual information
to model systems for privacy evaluations, and presents non-
existential definitions of the four Common Criteria privacy
concepts. Section six concludes with an outline of related
ideas and open issues.

1.1 Evidence-based trust/reputation

Evidence-based systems work basically with two sets
of evidence (data describing interaction outcomes). The
primary set contains evidence that is delivered (or se-
lected from locally stored data) according to a given re-
quest content. That data is used for reputation evaluation to
grant/reject access requests. Data in this first set may con-
tain information from third parties representing evidence
about behaviour collected by other nodes – recommenders.

The secondary set comprises data relevant to a local
system. That data is used for self-assessment of the lo-
cal system security in various contexts (it may be a non-
deterministic process in a certain sense). This set may be
also referenced as derived or secondary data. Note that there
may be an intersection between the two evidence sets with



implications to privacy issues that we are investigating in
related projects [4, 5].

The approach of reputation systems is rather probabilis-
tic and this feature directly implies properties of security
mechanisms that may be defined on top of such systems.
The essential problem arises with recommendations that
may be artificially created by distributed types of attacks
(Sybil attack [7]) based on large number of nodes created
just to gather enough evidence and achieve maximum repu-
tation that would allow them to launch their attack(s).

1.2 A note on the Common Criteria and Freiburg
Privacy Diamond models

This paper proposes formal definitions of existing Com-
mon Criteria concepts/areas of privacy and compares them
with the Freiburg Privacy Diamond model (FPD) [18]. Re-
cent research in anonymity systems [6, 10, 15] demonstrates
that it is usually unfeasible to provide perfect anonymity
and that implementations of privacy enhancing systems
may provide only a certain level of privacy (anonymity,
pseudonymity). This lead to definitions of several metrics
that can quantify level of privacy achievable in a system,
most often a (remailing) mix.

The Common Criteria class Privacy deals with aspects
of privacy as outlined in their four families. Three of these
families have a similar grounding with respect to entities
(i.e., users or processes) whose privacy might be in dan-
ger. They are vulnerable to varying threats, which make
them distinct from each other. These families are Unob-
servability, Anonymity, and Unlinkability. The fourth fam-
ily – Pseudonymity – addresses somewhat different kind of
threats.

1.3 Motivation

While working on related issues [5], we became aware
of the need to define the Common Criteria concepts (called
families) dealing with privacy in a bit more precise fash-
ion. As we were examining definitions of privacy con-
cepts/families as stated in Common Criteria two negative
facts emerged. First, the definitions are given in an exis-
tential manner, and secondly, not all aspects of user inter-
actions relevant to privacy are covered. Both issues come
from research carried out in the areas of side-channel anal-
ysis and security of system implementations, showing that it
is not sufficient to take into account only the idealised prin-
cipals and messages. It is also very important to consider
the context, in/with which the interactions are undertaken.
Information like physical and virtual (IP, MAC addresses)
positions of users and computers, time, type of service in-
voked, size of messages, etc. allow to profile typical user

behaviour and successfully deteriorate privacy of users in
information systems.

We propose to introduce context information (side/covert
channels, like physical and virtual location of users and
computers, time, type of service invoked, size of messages,
etc.) into the CC model and compare it with the FPD model
that reflects only one very specific context information – lo-
cation.

Our objectives for starting this work are as follows.
Firstly, we want to provide a model that allows one to
cover as many aspects of user interactions as is beneficial
for improving quantification/measurement for different as-
pects of privacy; this model shall definitely provide for bet-
ter reasoning/evaluation of privacy than Common Criteria
and Freiburg Privacy Diamond models do. Secondly, and in
a close relation to the first objective, we want to illustrate
the deficiency of the Common Criteria treatment of privacy,
and to provide a foundation that would assist in improving
this treatment. Thirdly, with a long-term perspective, we
aim to provide basis for partly or fully automated evalua-
tion/measurement of privacy.

This paper does not address all aspects of data collection
for privacy models, and neither does it suggest any means
for improving the level of privacy protection.

1.4 A simple example

Let us present a trivial example that we use later in this
paper to compare the formal models for privacy. The at-
tacker attempts to determine which payment cards are used
by a certain person with a particular card – she is interested
in linking together all the cards of this person (identifica-
tion of the particular person is not part of the attacker’s goal
at the moment). We assume the attacker is able to collect
till receipts of shoppers from the same house or the same
company. For this subset of supermarket clients we then do
not mind a given receipt to show only a part of the payment
card number.

There are three payment cards (with numbers 11, 21, 25)
used for three actual shoppings (visits of the supermarket
resulting in payments – A, B, C), and there is also a set of
typical baskets/shopping lists (l, m) in our simplistic exam-
ple.

The attacker has a precise (100%) knowledge about con-
nections between payment cards and shoppings, and an im-
precise knowledge about classification of individual shop-
pings into typical “consumer group” baskets. This classifi-
cation to “typical baskets” is usually done with some kind
of a data-mining algorithm over actual shopping lists. Note
that one could obviously achieve perfect knowledge should
loyalty cards be used (and their numbers on the receipts),
introduction of this has no qualitative impact to this exam-
ple illustration in our model.



With just changing semantics, we may define a very
similar example based on users of chat services connect-
ing from a given Internet cafe. The categories would then
be chat-room pseudonyms, chat sessions, and classifica-
tion into groups based on interest (content) and/or language,
with the attacker’s goal of identifying pseudonyms used by
one user in different chat sessions.

2. Privacy in the Common Criteria

2.1. The starting point – model

Since some of the discussions and proposals in this paper
are based on the Common Criteria concepts, let us briefly
present the related information. Relevant Common Criteria
notions and concepts are as follows [17]:

Target of Evaluation (TOE) – An IT product or system
and its associated administrator and user guidance doc-
umentation that is the subject of an evaluation.

TOE Security Functions (TSF) – A set consisting of all
hardware, software, and firmware of the TOE that must
be relied upon for the correct enforcement of the TOE
security policy.

TSF Scope of Control (TSC) – The set of interactions that
can occur with or within a TOE and are subject to the
rules of the TOE security policy.

Subject – An entity within the TSC that causes operations
to be performed.

Assets – Information or resources to be protected by the
countermeasures of a TOE.

Object – An entity within the TSC that contains or receives
information and upon which subjects perform opera-
tions.

User – Any entity (human user or external IT entity) out-
side the TOE that interacts with the TOE.

We can see (fig. 1) that user does not access objects di-
rectly but through subjects – internal representation of her-
self inside TOE/TSC. This indirection is exploited for defi-
nition of pseudonymity as we will see later. Objects repre-
sent not only information but also services mediating access
to TOE’s resources. This abstract model does not directly
cover communication like in (remailer) mixes as it explic-
itly describes only relations between users/subjects and re-
sources of target information system. However, it is not
difficult to extend the proposed formal definitions of major
privacy concepts based on this model for communication
models.

TOE
TSC

TSF

resources
interactions

Users

ObjectsSubjects

Figure 1. Common Criteria model.

2.2 Privacy in the Common Criteria

Unobservability : This family ensures that a user may
use a resource or service without others, especially
third parties, being able to observe that the resource
or service is being used. The protected asset in this
case can be information about other users’ communi-
cations, about access to and use of a certain resource or
service, etc. Several countries, e.g. Germany, consider
the assurance of communication unobservability as an
essential part of the protection of constitutional rights.
Threats of malicious observations (e.g., through Trojan
Horses) and traffic analysis (by others than communi-
cating parties) are best-known examples.

Anonymity : This family ensures that a user may use a re-
source or service without disclosing the user identity.
The requirements for Anonymity provide protection of
the user identity. Anonymity is not intended to protect
the subject identity. Although it may be surprising to
find a service of this nature in a Trusted Computing
Environment, possible applications include enquiries
of a confidential nature to public databases, etc. A
protected asset is usually the identity of the requesting
entity, but can also include information on the kind of
requested operation (and/or information) and aspects
such as time and mode of use. The relevant threats
are: disclosure of identity or leakage of information
leading to disclosure of identity – often described as
“usage profiling”.

Unlinkability : This family ensures that a user may make
multiple uses of resources or services without others
being able to link these uses together. The protected as-
sets are of the same as in Anonymity. Relevant threats
can also be classed as “usage profiling”.

Pseudonymity : This family ensures that a user may use a
resource or service without disclosing its user identity,
but can still be accountable for that use. Possible ap-
plications are usage and charging for phone services



without disclosing identity, “anonymous” use of an
electronic payment, etc. In addition to the Anonymity
services, Pseudonymity provides methods for authori-
sation without identification (at all or directly to the
resource or service provider).

2.3. Privacy families revisited

Common Criteria privacy families are defined in an ex-
istential manner and any formal definition of them has to
tackle a number of ambiguities. It is unrealistic to as-
sume perfect/absolute privacy as demonstrated by several
anonymity metrics, based on anonymity sets (number of
users able to use a given resource/service in a given con-
text) [12] or entropy assigned to a projection between ser-
vice and user/subject identities (uncertainty about using a
service) [15].

Can we introduce more formal definition of privacy no-
tions and use them to define mutual relations? It is not easy,
but the prospects of getting a clearer picture of mutual rela-
tions between different privacy aspects/qualities are encour-
aging.

Our proposal for the CC model privacy formalisation
is based on the following graphical representation (fig. 2).
The set S represents observations of uses of services or re-
sources, PID is equivalent of subjects and ID stands for
users as defined in the CC. Sets US and UID are sets of
all possible service use observations and identities, respec-
tively – not only those relevant for a given system. By
stating with probability not significantly greater than in the
following definitions, we mean negligible difference (lower
than ε) from a specified value [3]. Let A be any attacker
with unbounded computing power.

ID

u

UID

mi

US

P

ID

m

S

Figure 2. Schematics for the CC view of pri-
vacy.

Our formal transcription of existential definitions of CC
privacy families is as follows.

Unobservability – there is a space of encodings (US) from
which some elements are defined to encode use of ser-
vice/resource (S). However, A is not able to determine

∀s ∈ S with a probability significantly greater than
1/2 whether a particular s ∈ S or s ∈ (US − S).

Anonymity – there is a probability mapping mu : S →
UID. When

1. A knows the set ID – then ∀ s ∈ S, uID ∈ ID,
she can only find mu(s) = uID with a probabil-
ity not significantly greater than 1/|ID|.

2. A does not know anything about ID (particular
elements or size) – then for ∀ uID ∈ UID, she
cannot even guess whether uID ∈ ID with a
probability significantly greater than 1/2. (The
probability of finding mu(s) = uID would not
be significantly greater than 0.)

Unlinkability – let us assume there is a function δ : m ×
S × S → [no, yes]. This function determines whether
two service uses were invoked by the same uID ∈ UID

or not. Parameter m stands for a function that maps
service uses (S) into a set of identities UID (e.g., mu

from fig. 2).
It is infeasible for A with any δ and any s1, s2 ∈
S, s1 6= s2 to determine whether m(s1) = m(s2)
with a probability significantly greater than 1/2.

Pseudonymity – there exists and is known to A an unam-
biguous mapping mu(s) = u, ∀ s ∈ S, u ∈ PID.
There also exists a mapping mi(u) = uID, ∀u ∈
PID, uID ∈ ID, but is subject to strict conditions
and not known to A. When A

1. knows ID, she cannot determine correct uID

with a probability significantly greater than
1/|ID|;

2. does not know ID, she can only guess with
a probability not significantly greater than 1/2
whether uID ∈ ID.

These existential expressions can then be easily turned
into probabilistic ones that allow for expressing differ-
ent qualitative levels of all these privacy concepts/families.
This can be done simply by changing the “not significantly
greater than” expression to “not greater than ∆”, where ∆
is the given probability threshold.

2.4 The Unlinkables

Unlinkability cannot be satisfied without other privacy
families. It is now understood [13, 14] that the Com-
mon Criteria definition of unlinkability is not supporting
some aspects of unlinkability in real systems, and a Com-
mon Criteria modification proposal in this manner is cur-
rently submitted. We point the reader to the fact that when



pseudonymity is flawed, an attacker may obtain the ID of an
actual user. The same holds when anonymity is breached.

Moreover, we are convinced that unlinkability may be a
property of other privacy families. This comes straight from
the formal unlinkability definition as stated above, where
mapping m is the link binding the families together. Un-
linkability should ensure that the particular family (or rather
its implementation) does not contain side-channels (context
information) that could be exploited by an attacker. We have
found, in this context, two other meanings for unlinkability
during our analysis. The first meaning is expressed in the
following definition of unlinkable pseudonymity. It says
that when a user employs two different pseudonyms, any
A is not able to connect these two pseudonyms together.

Unlinkable pseudonymity – As for the definition of
pseudonymity above in part 2.3, and also for any
s1, s2 ∈ S, where s1 6= s2,mu(s1) = u1,mu(s2) =
u2 (where u1, u2 ∈ PID)

1. if A knows ID – she cannot find (with a proba-
bility significantly greater than 1/|ID|), whether
mi(u1) = mi(u2), or

2. A does not know ID – she cannot guess with a
probability significantly greater than 1/4 whether
mi(u1)×mi(u2) belong to ID×ID, ID×ID,
ID×ID, ID×ID, respectively. (ID = UID −
ID)

The second semantics is built on the assumption that
knowledge of several pieces of mutually related information
is much more powerful than knowledge of just one piece of
such information. When compared with the previous defini-
tion of unlinkable pseudonymity, the definition is now con-
cerned with a property ensuring that there is no increase in
the probability of correct identification of a given user when
more information is available. The same reasoning lies be-
hind the following definition of unlinkable anonymity.

Unlinkable anonymity – As for the definition of anonymi-
ty above in part 2.3, and

1. If A knows ID – she cannot find with a prob-
ability significantly greater than 1/|ID| such
s1, s2 ∈ S, where s1 6= s2,mu(s1) = mu(s2).

2. A does not know ID – with a probability not
significantly greater than 1/4 whether mu(s1) ×
mu(s2) belong to ID×ID, ID×ID, ID×ID,
ID × ID, respectively.

We can apply profiling when unlinkability is breached.
Basically, unlinkability should ensure that the particu-
lar family (or its implementation) does not contain side-
channels that could be used when several service invoca-
tions appear.

The example: The figure 3 depicts how CC models our
example from part 1.4. It is obvious that there is no informa-
tion about the context information for the basket (chat) con-
tents. This implies that an attacker will not find any link be-
tween payment cards (pseudonyms) using this model, even
though the link/connection exists. This shows that CC sim-
ply do not address contextual information.
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Figure 3. The example in the CC model.

3. Freiburg Privacy Diamond

FPD is a semiformal anonymity (and partly also unlink-
ability) model by A. Zugenmaier et al. [18, 19]. The model
originated from their research in the area of security in mo-
bile environments. The model is graphically represented as
a diamond with vertices User, Action, Device (alternatives
for CC’s user, service, and subject), and Location (fig. 4).
The main reason for introducing location as a category here
is probably due to the overall focus of this model on mobile
computing.

Action

u

l

a

d Location

User

Device

Figure 4. Freiburg Privacy Diamond.

Anonymity of a user u performing an action a is
breached when there exists a connection between a and
u. This may be achieved through any path in the diamond
model. Let us recap basic definitions of the FPD model:



1. Any element x has got a type type(x) ∈ {User,
Action,Device, Location}. Any two elements, such
as x, y ∈ {e|type(e) = User ∨ Action ∨ Device ∨
Location}, type(x) 6= type(y) are in a relation R if
the attacker has evidence connecting x and y.

2. An action is anonymous if UR = {u | type(u) =
User ∧ (u, a) ∈ R} is either empty or |UR| > t > 1,
where t is an anonymity threshold defining minimum
acceptable size of anonymity set.

3. There is the transitivity rule saying that if (x, y) ∈ R
and (y, z) ∈ R, and type(x) 6= type(z), then x, z ∈
R.

4. The union of all initial relations known to an attacker
A defines his initial view V iewA.

5. The transitive closure V iewA of V iewA defines all the
information an attacker A may infer from her initial
view.

The book [18] also introduces three types of attacks with
context information.

• Recognition attack – A realises that several users (xi,
type(xi) = User) are in fact a single user.

• Linking attack – (x, y) ∈ R and (z, y) ∈ R are in the
V iewA. When A is able to find just one pair (y, xi) ∈
R then she will know that xi = x and (z, x) ∈ R.

• Intersection attack – A knows anonymity sets for sev-
eral actions. When she knows that a certain user is in
all anonymity sets, she can apply intersections to re-
duce size of anonymity set and eventually identify the
user.

Finally, the model assigns probabilities to edges in order
to express attacker’s certainty about existence of particular
relations with some simple rules how to derive certainty for
transitive relations.

The example: When attempting to model the example
scenario (see part 1.4) in the FPD model, the attacker ends
up with three diamonds for each service use (see fig 5). Here
user and location represent domains with no particular val-
ues as there is no such information available. The attacker
cannot find any intersection of the three diamonds – i.e.,
there is no attack as defined by the FPD model theory. This
is obvious since the FPD model does not cover any other
contextual information, only location and device.

user

A

location location

user user

location

B C

252111

Figure 5. The example in the FPD model.

4. Contexts in the two models

Contexts and their roles are not reflected in the CC
model. Considering fig. 2, we see that the two vectors in
question (mi,mu) are bound together through a pseudonym
– subject in the CC language. Contexts may be assigned to
any element of the model. ID represents physical entities
and we may know their mobile phone locations, addresses,
patterns of network usage, etc. PID – virtual IDs – can be
characterised by previous transactions and possibly virtual
locations (a virtual location may be in some cases very ef-
fectively mapped on a physical location). Elements of S
may be further characterised by type, provider, etc.

The edges between sets (their elements) represent ses-
sions taking place in the system. The information we may
gather about them are highly dependent on actual imple-
mentation of the system and may comprise contextual in-
formation such as time, length, routing path, content, etc.

4.1 Contexts in FPD

The FPD model only briefly mentions context informa-
tion but does not introduce any definition of it. The attacks
based on context information do not say how to perform
them but only defines changes in V iewA when an attack is
completed.

Since the FPD model newly addressed the mobile
computing environment, as opposed to the old-fashioned
“static” environment, location had a very prominent role,
as did the device to some extent. We have decided to treat
these as “ordinary” context information, i.e. as any other
additional information about the system that can link a user
and an action (or more precisely, their identifiers).

5 Context revisited – basics of the PATS (Pri-
vacy Across-The-Street1) model

We propose the following approach, inspired by the way
location and device (descriptors) are represented in FPD.

We suggest all context information available to an at-
tacker to be represented as vertices in a graph, where edges
are weighed with the probability of the two incident ver-
tices (contextual information, user and service IDs) to be

1Authors of this proposal work for different institutions located across
the street.



related/connected. Those connections may be between any
two vertices, and a path connecting a user ID and a service
ID with a certain probability value of the path suggests a
link between the service use and the user ID exists.

The graph reflects all knowledge of an attacker at a given
time. Attackers with different knowledge will build differ-
ent graphs for a system as will likely do the same attacker
over some time.

What is not clear to us at the moment is the question
whether pseudonyms should be treated differently from
other contexts or not. Clearly they are more important in
the model since their connection to users and actions de-
fines level of pseudonymity achieved in the system. Yet at
the moment we suggest all vertices to be treated equally, al-
though we suspect that some of them might be more equal
than others. :-)

5.1 Outline of the graph model

We denote the set of all vertices by V , the set of all iden-
tifiers of service instances by S, and the set of all user IDs
by ID. There are no edges between any pair of elements
of ID, only indirect paths through a linking context, and
the same applies to elements of S. There is also a function
Wmax calculating overall probability weight for a path in
the graph, and therefore also a way to determine the high-
est value Wmax(va, vb) for a path between va and vb. The
value of any path is calculated as a multiplication of the
weights (w) of all its individual edges, e.g. for the path P =
v1, v2, . . . , vi of i vertices of the graph, the value of the path
P is W (v1, vi) = w(v1, v2) × w(v2, v3) × . . . w(vi−1, vi).

Unobservability (of service si) – a graph that A can build
after observing a system at a given time does not in-
clude si at all.

Unlinkability (between two nodes v1, v2, at the level ∆) –
a graph that A can build when observing the system at
a given time has no path connecting v1 with v2 with
the overall probability greater than ∆, i.e. provides
W (v1, v2) ≤ 1/|V | + ∆, where v1, v2 ∈ V .

Anonymity (of a user uID ∈ ID, at the level ∆) – then
∀ v ∈ V , when A

1. knows the set ID, she can only find a path from v
to uID with the weight not greater than 1/|ID|+
∆, such that Wmax(v, uID) ≤ 1/|ID| + ∆;

2. does not know anything about ID (particular el-
ements or size), she can only find a path from v
to uID with the weight not greater than ∆, i.e.
Wmax(v, uID) ≤ ∆.

Pseudonymity (of a subject/pseudonym u ∈ PID, at the
level ∆) – there exists a path known to A from any

s ∈ S to u with a satisfactory value of Wmax(s, u),
but for A there is no knowledge of an edge from u to
any uID ∈ ID such that when A

1. knows ID, the path from u to any uID

has weight not greater than 1/|ID| + ∆, i.e.
Wmax(u, uID) ≤ 1/|ID| + ∆;

2. does not know anything about ID (particular ele-
ments or size), the path from u to uID has weight
not greater than ∆, i.e. Wmax(u, uID) ≤ ∆.

There are several proposals for formal frameworks for
anonymity [8, 9] and unlinkability [16]. Frameworks in-
troduced in these papers define typed systems with several
defined categories like agents, type of agents, messages [9]
or an inductive system based on modal logic of knowledge
[8]. We believe that our proposal would be more flexible
and would cover context information as an inherent part of
the model thus opening interesting questions.
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Figure 6. En example with a PATS model
graph.

The example: Let us express our example from part 1.4
in the PATS model. Figure 6 shows how the context infor-
mation about typical basket contents is connected to actual
instances of shoppings. As we are interested in connections
between payment cards (pseudonyms), we are looking for
paths (and their aggregate values) containing pairs of par-
ticular payment cards. Let us try to find paths between card
11 and the other two cards:

Path Probabilities Aggregate
11 – A – l – B – 21 1 ∗ 0.9 ∗ 0.1 ∗ 1 0.09
11 – A – l – C – 25 1 ∗ 0.9 ∗ 0.8 ∗ 1 0.72
11 – A – m – B – 21 1 ∗ 0.1 ∗ 0.9 ∗ 1 0.09
11 – A – m – C – 25 1 ∗ 0.1 ∗ 0.2 ∗ 1 0.02
. . . . . . . . .

Figure 7. Paths connecting payment card 11
with the other two cards



These are the shortest (and highest value) paths only.
The attacker may deduce (with a high probability) that pay-
ment cards 11 and 25 belong to the same person, though
she does not know who this person is. According to our
definitions, unlinkable pseudonymity is breached.

6. Conclusions and open issues

This paper points out that contexts provide (or perhaps
we can even say that they produce) side-channels that are
not covered neither by the Common Criteria Privacy Class,
nor by the Freiburg Privacy Diamond model. We also be-
lieve that contexts in general are not well reflected in other
current research attempts to quantify the levels (and deterio-
ration) of privacy. A simplistic introduction of pseudonyms
will not guarantee perfect privacy, and we need to have
some means to quantify what levels of privacy is needed
and/or achievable for specific scenarios. There are two so-
lutions for protection against side-channels: hiding and so-
called anonymizing. Hiding is what anonymizing networks
utilise – they combine number of messages together, thus
creating satisfactory anonymity set. Anonymizing (or rather
more often in practice pseudonymising) requires creation of
layers that cloak the identity of the protected entity. Com-
mon Criteria use this concept when defining pseudonymity
that still enforces accountability of users, but hides/shades
their identity.

One particularly interesting issue relates to the Common
Criteria definition of unlinkability, as empirically reviewed
by Rannenberg and Iachello [13, 14] and more formally
specified above in section 2.4, is whether the unlinkable
“items” in question should only be operations (service invo-
cations) or whether other kinds of unlinkability should also
be considered. We have provided a supporting evidence for
a substantial revision of unlinkability specifications, while
leaving the actual revision as an item for the future research.

We also provide our basic PATS model that is not so lim-
ited in the coverage of selected aspects of user interactions
and therefore allows for better quantification/measurement
of different aspects of privacy. This proposal, unlike the CC
or FPD models, introduces a computational model (based
on graph theory). One of the problems we are currently
examining is atomicity for the vertices, i.e. contextual in-
formation. We currently review various approaches to this
problem, being aware that the issue of atomicity has a crit-
ical impact on the possibility of graph normalisation and
therefore also for the provision of the critical properties of
completeness and soundness. This work in progress in-
cludes the issue of edge dependence, for it is clear that the
edges are not completely independent. We can mark sets of
nodes from distinct kinds of context (e.g., pseudonyms, IP
addresses used in connections from the same provider) – let
us call them domains. Then we can address additional graph

properties, e.g., such that for all pairs of domains D1, D2,
all sums of probabilities from any node in D1 to all nodes
in D2 are not higher then a given value, typically 1.

The PATS approach allows for two definitions of
anonymity, a weaker one considering a weight of the en-
tire path from uID to si can be added to the stronger one
above that considers the intermediate edges from uID only
(to any other vertex – contextual information – that would
then be identifiable).

Another interesting issue is the role of time that has a
two-fold role – firstly, it can be a contextual information
(time of an action invoked by a certain subject, i.e. three
mutually connected vertices). Secondly, the probabilistic
weights of edges in a graph change with time, as do the sets
of vertices and edges as such. Obviously, the contextual role
of time may be reflected by the latter view – time of an ac-
tion invoked by a certain subject is denoted by existence of
vertices describing action and subject identifiers, connected
by an edge with weight 1, at the given time.
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