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Based on Secret-Key Certificates
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Abstract

An off-line electronic coin system is presented that offers multi-party security and unconditional privacy of
payments. The system improves significantly on the efficiency of the previously most efficient such system
known in the literature, due to application of a recently proposed technique called secret-key certificates.

By definition of secret-key certificates, pairs consisting of a public key and a matching certificate can be
simulated with indistinguishable probability distribution. This allows a variety of polynomial-time reductions
from a well-known signature scheme to the cash system. In particular, the withdrawal protocol can be proved
to be restrictive blind with respect to one account holder, relying only on a standard intractability assumption;
no such result has been proved before in the literature.

Another consequence of the application of the secret-key certificate technique is that the withdrawal
protocol is not a blind signature issuing protocol. This falsifies the popular belief that efficient privacy-
protecting off-line electronic cash systems must be based on withdrawal protocols that are blind signature

issuing protocols.
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Note: Except for some minor improvements and the inclusion of four figures, this paper is identical to

a paper that will appear in the Proceedings of the Second International Symposium of Latin American
Theoretical Informatics (LATIN ’95), Valparaiso, Chili, April 3—7, 1995.

1. INTRODUCTION

The information that is transferred in an electronic cash system has intrinsic value: it
represents the digital equivalent of cash. One can distinguish between on-line and off-
line systems, depending on whether the bank needs or doesn’t need to verify payments

in real time. Off-line cash systems are obviously highly preferable over on-line systems
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in case of low-value payments. Adequate security mechanisms, based on public-key
cryptographic techniques, can guarantee security against double-spending of electronic
coins. Another important characteristic of cash systems is whether privacy of pay-
ments is offered or not. Payments in a privacy-protecting electronic cash system are

untraceable and unlinkable, just as ordinary coins are.

A fairly large body of cryptographic literature is devoted to the design of privacy-
protecting off-line electronic cash systems. Almost all of this literature [7, 10, 11, 13,
16, 17, 18, 19, 23, 25, 28, 29, 32, 33, 36, 37, 38, 39] is concerned with systems that only
offer traceability as a security measure against double-spending, based on a paradigm
of Chaum, Fiat and Naor [11]. This measure clearly does not offer a security level that
is adequate for practical purposes. If an electronic cash system is to be of practical
value, then it must offer prior restraint of double-spending, at least as the first line of

defense.

An important reason for the lack of prior restraint in the abovementioned references
is that prior restraint can only be incorporated in an off-line system by using tamper-
resistant user-modules, but naive adoption of tamper-resistant devices has the effect
that account holders can no longer guarantee the privacy of their own payments. The
only configuration that can ensure prior restraint, while at the same time maintaining
the ability of account holders to ensure their own privacy, is one that has been proposed
by Chaum [9] (see Chaum and Pedersen [12] for formal definitions and methodology,
and Bos and Chaum [2] for the very first appearance of this approach in the cryp-
tographic literature). In the configuration proposed by Chaum, an account holder
interfaces a tamper-resistant device of the bank to his own computing device in such a
way that all low of information between the tamper-resistant device and the outside

world must pass through his computer.

Developing off-line electronic cash protocols for this configuration, without giving
up on the traceability of double-spenders (which can serve as a second line of defense
in case tamper-resistance is compromised), is far from trivial: the configuration forces
the use of secure three-party protocols, which are obviously a great deal harder to
construct than secure two-party protocols. Maintaining traceability after the fact as as
second line of defense nevertheless seems imperative, since practice indicates that any
tamper-resistant device can be compromised if only sufficient resources are at hand.

In [3], T presented the first privacy-protecting off-line electronic cash system that is

based on the configuration proposed by Chaum, and that offers both lines of defense
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against double-spending. It moreover offers an even greater level of privacy than that
envisioned by Chaum, in that the computer of the account holder can prevent the de-
velopment of so-called shared information, a privacy notion that has been introduced
by Cramer and Pedersen [15]. (For an incomplete, and hence rather dubious, descrip-
tion of how this functionality might be achieved in the system of Ferguson [23], see
Ferguson [24].) Apart from the greatly improved security due to the incorporation of
prior restraint of double-spending, the system described in [3] compares very favorably
to previously proposed privacy-protecting off-line electronic cash systems with respect
to efficiency. This success is due to a new technique, called restrictive blinding, in

combination with the so-called representation problem in groups of prime order.

As with any privacy-protecting off-line electronic cash system that features trace-
ability of double-spenders, regardless of whether it serves as the first line of defense or
only as the second, by far the most difficult aspect of the security analysis is to prove
that the “identity” of the account holder indeed ends up being encoded in his elec-
tronic coins. In the system in [3] such a proof was not provided; instead this property
simply was assumed to hold, based on evidence provided by partial proofs. Assuming
this non-standard assumption allowed all other statements to be proved on the basis
of a standard intractability assumption that is related to the Schnorr identification
scheme [35], which certainly was a big step forward in comparison to the provability of

earlier “practical” proposals in the literature.

The particular restrictive blind signature scheme used in [3] was derived from an
“ordinary” blind signature issuing protocol due to Chaum and Pedersen [12], and is a
particular instance of a public-key certificate scheme. (See Chaum [8] for introduction
of blind signatures.) As such, it is a blind signature issuing protocol, albeit a very
special one. Subsequent attempts by me, and others, to design similar other restrictive
blind signature schemes failed. The experienced difficulty in designing other restrictive
blind signature schemes seems to be due to the tight relation between a public key and
a matching certificate; such pairs by definition cannot be forged in secure public-key
certificate schemes.

Recently, in part (i) of [4], I described a new technique, called secret-key certifi-
cates. This technique is much more suitable for the design of restrictive blind signa-
ture issuing protocols than the public-key certificate technique (see part (ii) of [4]).
More specifically, the new technique allows any “Fiat-Shamir type” signature scheme
(e.g., [6, 21, 22, 27, 30, 35]) to be converted to a restrictive blind signature scheme, if
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only it can be converted to an ordinary blind signature issuing protocol by applying a
blinding technique due to Okamoto and Ohta [31] (see also Okamoto [30]). The result-
ing signature schemes can rigorously be proved to be restrictive blind with respect to a
single receiver, relying only on a standard intractability assumption. The new restric-
tive blind signature schemes are more efficient for the receiver than the scheme used
in [3], both in on-line and off-line computational requirements. Somewhat surprisingly,
the new restrictive blind signature schemes are not ordinary blind signature schemes;

see part (ii) of [4] and the discussion in Sect. 7.

The off-line electronic cash system that is proposed in this paper is based on the
secret-key certificate technique. It achieves exactly the same properties as does the
system in [3], except for the ability to mathematically disprove false claims of double-
spending. It thereby falsifies the popular belief that efficient privacy-protecting off-line
electronic cash systems (and privacy-protecting credential mechanisms in general) must
be based on public-key certificates, and hence on withdrawal protocols that are special

instances of ordinary blind signature issuing protocols.

To facilitate comparison to [3] the description in this paper is explicitly in terms of a
secret-key certificate scheme based on the Schnorr signature scheme. The description
in part (ii) of [4] provides enough handles to easily make the conversion for any of the

other secret-key certificate schemes that are described in that reference.

In view of the number of pages that is absorbed by the analysis of correctness, a
motivation of the design criteria for the system has been refrained from. Instead, the
reader is referred for background information to the references mentioned above (in
particular [9, 11, 12, 15]), and to Sections 2 and 4 of [3] for the complete picture. For
the same reason, a description of an intermediate version (i.e., one that only offers
traceability as a defense against double-spending), however helpful in understanding

the complete system, has been omitted.

2. A BRIEF OVERVIEW OF THE NEW SYSTEM
A high-level overview of the new system is presented below. This should provide a

clear picture of the flow of electronic cash in the new system.

The bank issues an electronic coin to a user by issuing in a withdrawal protocol a
certified key pair to him. A certified key pair is a triple consisting of a secret key, a
public key and a certificate of the bank on the public key. The pair consisting only
of the public key and the certificate will be called a certified public key; since we use
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secret-key certificates, such pairs can be generated by anyone, without cooperation of
the bank (see part (i) of [4]). Each electronic coin is represented by a different certified
public key.

The user has at his disposal a computer that is trusted by him (typically a personal
computer or a hand-held computer), and a tamper-resistant device that has been issued
to him by the bank (typically a smart card or a PCMCIA card). The configuration of
the user’s computer and his tamper-resistant device is such that all flow of information
between the tamper-resistant device and the outside world must pass through the
computer; see [9, 12]. By construction of the protocols, the computer of the user
can perfectly blind the certified public key when performing the withdrawal protocol,
but not a certain “blinding-invariant” part of the secret key that corresponds to the
certified public key. The construction furthermore ensures that this blinding-invariant

part of the secret key is known only to the tamper-resistant device.

To spend the electronic coin in a succeeding payment protocol at a service provider,
the computer of the user computes with respect to the certified public key a digital
signature on a message of the service provider. It then sends the certified public key and
the signature to the service provider. Prior restraint of double-spending the electronic
coin is due to the fact that not the entire secret key is known to the user’s computer,
and so computation of a digital signature requires the assistance of the tamper-resistant
device. Of course, the tamper-resistant device has been programmed by the bank such
as to assist only once in computing a signature with respect to a certified public key

of the user.

Because the certified public key has been perfectly blinded by the user’s computer
in the withdrawal protocol, the revelation of the certified public key in the payment
protocol does not leak any information that is correlated to the identity of the user.
Moreover, the computer of the user moderates on the flight all flow of information
between the tamper-resistant device and the service provider. The moderation ensures
that all subliminal channels are prevented. Furthermore, the computations performed
by the user’s computer prevent the development of randomly generated numbers that
are known to both the tamper-resistant device and the service provider. Although
mutually known random numbers cannot serve as a subliminal channel, they would
readily enable the payments of the user to be traced in case they are retrieved by
the bank upon return of the tamper-resistant device; see [15]. In all, there are three

potential ways for the bank to compromise the privacy of the user, each of which is
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prevented information-theoretically by virtue of the protocol design.

To deposit the electronic coin, at a later stage, the transcript of the payment protocol
is sent by the service provider to the bank in a deposit protocol. If two different payment
transcripts involve the same certified public key, then the same electronic coin has been
double-spent by a party that managed to physically extract the secret information of a
tamper-resistant device. By virtue of the protocol design, the two respective signatures
enable the bank to compute the secret key that corresponds to the certified public key,
and in particular the blinding-invariant part thereof; because the bank knows which
user it issued the tamper-resistant device with this blinding-invariant part to, it can

trace the double-spender.

3. THE BLIND SCHNORR SIGNATURE SCHEME

In describing protocols, the following actions are always implicitly assumed: a party
halts the execution of a protocol in case it does not accept at a certain stage; and a
number that is said to be chosen at random from some set is generated according to
a uniform probability distribution over the specified set, independently of any other

event. Assignments are always denoted by the symbol “:=.”

Because the security analysis of the cash system will be in terms of polynomial-
time reductions from a well-known protocol to the cash system (which can be seen
as one huge multi-party protocol), the key generation algorithms in the cash system
must inherit certain characteristics of the key generation algorithm for the well-known
protocol. We therefore first study this protocol.

Let us start by recapitulating the Schnorr identification scheme [35]. The arith-
metical operations in the Schnorr identification scheme are performed in a group G|,
of prime order ¢ for which polynomial-time algorithms must be known to multiply,
determine equality of elements, test membership, and to randomly select elements.
Furthermore, no feasible algorithms for computing discrete logarithms in G, should
be known. Various types of such groups are well-known in the literature, and for this
reason no specific such type will be fixed. For simplicity, and without loss of generality,
we will assume that the random generation of a group G, is completely specified by
generating at random a prime ¢g. By this convention, the Discrete Log assumption for
G, is the following: no probabilistic polynomial-time algorithm, on input a random
triple (g, g, h), can output log, h with overwhelming probability of success (and hence

also not with non-negligible probability of success). We will henceforth assume without
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loss of generality that each of the elements in the input triple is generated indepen-
dently at random according to a uniform probability distribution over the following
sets: ¢ is chosen from the set of primes of length k& (where k is a security parameter),
g is chosen from G, \ {1}, and A is chosen from G,. (We exclude g = 1 merely for
convenience, because we want to avoid having to mention in several proofs later on
that there is a negligible probability that g is not a generator, or that the simulator in
these proofs generates a statistically indistinguishable probability distribution rather

than an identical one.)

The key generation algorithm for the Schnorr identification scheme, on input security
parameter k, generates a public key (g, g, h) and a corresponding secret key log, h, to
be used by a probabilistic polynomial-time prover P. The prime ¢ and the generator
g are chosen as specified for the Discrete Log assumption. The secret key is chosen at
random from Z,, and h is correspondingly computed as h := g*. (We will not consider
the key generation algorithm to generate in addition a polynomial-size certificate of

primality of ¢.)

P can prove knowledge of its secret key to a probabilistic polynomial-time verifier

by means of the following challenge-response identification protocol:
Step 1. P generates at random a number w € Z,, and sends a := g% to V.
Step 2. V generates a challenge ¢ € Zs», and sends it to P.

Step 3. P sends its response r := cx + w mod ¢q to V.

V accepts if and only if g"h™¢ = a.

The number n is a security parameter that is super-logarithmical in k. Note that we
have not assumed it to be generated as part of the public key, since it can be taken to

be (the floor or ceiling of) a predetermined constant fraction of log, g.

As shown by Schnorr, this protocol constitutes a proof of knowledge when V gen-
erates its challenge according to a uniform probability distribution, or one close to it.
(See Feige, Fiat and Shamir [21] for a treatment of proofs of knowledge, and Bellare
and Goldreich [1] for improvements related to the definition.) Although the protocol
presumably is not zero-knowledge, it is generally believed to be witness hiding (as
defined by Feige and Shamir [20]).

By applying a general technique, originating from Fiat and Shamir [22], for convert-

ing sound proofs of knowledge into signature issuing protocols, the protocol can be
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converted into a signature issuing protocol [35]. To sign a message m (which may be
a vector of numbers), the challenge ¢ should hereto be taken equal to H(m,a). Here,
H(-) is a description of a collision-intractable hash-function, of size polynomial in £,

that maps its inputs to Zgn.

Note that we have implicitly modified the key generation algorithm. The new key
generation algorithm, on input k, generates a public key (g, g, h, H(:)) and a secret key
log, h. The hash-function, H(-), is generated at random from some suitable family of
collision-intractable hash functions, and the other elements are generated in accordance

with the key generation algorithm for the Schnorr identification algorithm.

The interaction can be removed in the new protocol because ¢ can be determined
by P itself. Furthermore, because n typically can be taken to be much smaller than
the size of elements in G4, the most compact representation of a signature on m is the
pair (c,r), where c is equal to H(m, a). The pair (c,r) is called a Schnorr signature on
m if and only if ¢ is equal to H(m, g"h~¢). (Since the ability to determine a signature
on a new message by algebraically combining previously received signatures is not
necessarily excluded by collision-intractability, it is preferable that H(-) is correlation-
free, as defined by Okamoto [30].)

By retaining the interaction in the signature issuing protocol, V can receive a sig-
nature on a message m that is unknown to P. In particular, as shown by Ohta and
Okamoto [31], retaining the interaction enables V to in addition blind the signature
(¢,7); hereto P must allow the challenge ¢ in Step 2 to be in Z,. The resulting pairs,
consisting of a message and a corresponding Schnorr signature, can be shown to be
uncorrelated to views of P in executions of the signature issuing protocol. In other
words, this protocol is an “ordinary” blind signature issuing protocol, as (informally)
defined by Chaum (see [8] and later work).

Henceforth, we will refer to the interactive signature issuing protocol as the blind
Schnorr signature issuing protocol. Similarly, we will refer to the ensemble of key

generation algorithm and protocol as the blind Schnorr signature scheme.

4. THE SYSTEM
Before providing the mathematical description of the system, a few conventions are

explained.

The distinction is made between two kinds of account holders: parties that only

deposit electronic coins, and parties that (also) have the ability to withdraw electronic
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coins. Parties of the first kind are called service providers, and parties of the second
kind are called users. All parties in the description are denoted by calligraphic letters:
B for bank, C; for the computer controlled by a user U;, 7; for the tamper-resistant
device of U;, and S; for a service provider, where 7,5 € N. Each of B, C;, 7; and S;
should be thought of as a polynomial-time interactive Turing machine [21, 26] and ;
should be thought of as the pair (C;, 7;). The running times and the total number of

parties are polynomial in the security parameter k.

We are now prepared to describe the system.

4.1 Initial Key Generation

On input a security parameter k, the key generation algorithm of B generates a se-
cret key (xgo, x10) and a public key (g, go, g1, ho, H(-)). Since we have assumed in the
previous section independent uniform probability distributions for the key generation
algorithm for the blind Schnorr signature scheme, the following distributions apply to
the key generation algorithm for B:

e ¢ is a randomly chosen prime of length k.

e 7o and z;¢ are two randomly chosen elements in Z,.

go is a randomly chosen element in G, \ {1}.

ho denotes g3, and g; denotes g5™°.

H(-) is the description, of size polynomial in &, of a randomly chosen collision-

intractable hash-function that maps its inputs to Zgn.

(Had we not explicitly assumed an independent uniform probability distribution for the
elements generated by the key generation algorithm for the blind Schnorr signature
scheme, then its sub-algorithms would have had to be called, for which we would
have had to describe, and motivate, an appropriate dissection into sub-algorithms.
This would have obscured the description of the cash system, and even more so the
polynomial-time reductions from the blind Schnorr signature scheme that will be shown
later on. Note that this is not just being meticulous; it is imperative for the correctness

of the simulations.)

In terms of the overview in Sect. 2, a certified public key is a pair (h;, a;), (co, 7o)
such that
co = H((hohi, a;), gp° (hohi) ).



4. The System 10

We will from now leave out brackets, and simply write H(hoh;, a;, ). A certified key

pair, issued in the withdrawal protocol, is a triple

(($0i,$1i),(w0i,wu)), (hi,ai); (00,7"0)

Woi

0% grt and a; = g

such that (h;,a;), (co, 7o) is a certified public key, and h; = gy g7

W14

/4]

In this definition of a certified public key, the multiplication of h; by hg in the hash-
value is not needed; its only purpose is to make Assumption 2 in Sect. 5 look cleaner.

(Alternatively, Assumption 2 could be adapted.)

B also sets up two tables, one representing an account database to store informa-
tion related to its account holders, the other representing a deposit database to store

deposited electronic coins.

4.2 Opening an Account
When service provider S; opens an account, an entry is added by B to the account
database. This entry consists of an appropriate description of the “identity” of S;, and

a counter representing its cash balance.

When user U; opens an account, the same procedure is followed. In addition, B pro-
vides U; with a tamper-resistant device 7;, and stores a randomly chosen identification
number x1; € Z, in U;’s entry in the account database. (To ensure that each user
receives a unique identification number, the actual sampling distribution of course is
not the uniform one, but one indistinguishable from it.) This identification number is
the secret key of 7;. The corresponding public key of 7; is g7, and will henceforth be
denoted by h;. (Again, had we not explicitly assumed an independent uniform proba-
bility distribution for elements generated by the key generation algorithm for the blind
Schnorr signature scheme, then its sub-algorithms for generating a secret key x and

corresponding h := ¢* would have had to be called in order to generate z;; and h,;.)

Note that S; does not need a tamper-resistant device. Furthermore, the entry of S;

may contain a pseudonym instead of a description of its identity.

4.8 The Withdrawal Protocol
To withdraw an electronic coin, U; (after having proved ownership of the account)

performs the following protocol with B (see Figure 1):

Step 1. 7; generates at random a number w; € Z,, and sends a; := g, to C;. 7; then

stores w; in memory, for later use in the payment protocol.
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Step 2. B generates at random a number wy € Z,, and sends ay := ¢;° to C;.

Step 3. C; generates at random six numbers z;, wo;, W14, 51, S2, 53 € Zg. It computes
R} = g5%hi, af == gy % g1 hPai, ¢ := H(hohl, al, g5* (hohi)®?ap), and sends ¢y :=

77 7))

¢y + s2 mod ¢ to B.
Step 4. B sends g := cy(zoo + Z10%1;) + wo mod ¢ to C;, and debits the account of U;
by the value of the electronic coin.
C; accepts if and only if
90° (hohi) ™ = aq.

If this verification holds, C; computes r{ := 79 + ¢jz¢; + s; mod ¢, and stores a;, s3 and

the triple (zo;, woi, w1i), (AL, a;), (cy, 4) for later use in the payment protocol.

7)1

El

w; ER Zq
p— w
a; :=g;°
a;
e
Wy ER Zq
— wo
ap = 9o
Qo
(—
Toi, Woi, Wi, 51,52, 53 €ER Lyg
! . ,T0:
hi == g% hi
! wo; W14 J,83
a; = go"9, "hi’a;
/. ! ! S1
co = H(hohi, ai, g5 (hohi)*?ao)
Co := ¢y + S2 mod ¢
Co
—_—

o := co(Zoo + Z101:) + wo mod ¢

To
(—

‘?
90° (hohi) =% = ag

/ /
Ty 1= To + CuToi + s1 mod ¢

FIGURE 1: The Withdrawal Protocol.
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To withdraw [ electronic coins at once, U; is allowed to perform [ executions of the
withdrawal protocol in parallel. However, two different U;’s (who each have a different
identification number z;;) are not allowed to perform their executions of the withdrawal
protocol fully in parallel; only after B has received a challenge ¢y of the first user will
it send a number ag to the second user. In other words, withdrawals by different users
can overlap only partially. In Sect. 6 a simple modification is described that is believed
to enable executions of the withdrawal protocol to be run in parallel without any such

restriction.

4.4 The Payment Protocol
If C; accepted the withdrawal, then the electronic coin can be spent by U; at a service

provider S; by performing the following protocol (see Figure 2):

Step 1. C; computes d := H(h}, spec,al). C; then sends d' := d+ s3 mod g to 7;. The

format of spec is discussed below.

Step 2. If w; is stored in memory, then 7; sends r; := d'z1; + w; mod ¢ to C;. 7; then

erases w; from memory.

Step 3. If gi*h; d — a;, then C; accepts the response of 7;. C; then computes rq; :=
dzo; + wo; mod g and 7y; := 7; + wy; mod ¢, and sends the triple (h},a}), (cp, r5),

79 1
(7"01',7"11') to Sj.

S; computes d := H(h,, spec, a;), and accepts if and only if
g% g (h) ™ =a) and H(hohl,d! ggé)(hoh;)_cb) = cg.

) )

The number spec is a concatenation of several fields, in a format predetermined by
B. It comprises a first field that uniquely specifies the account of S; with B, and a
second field that contains a distinct value for each payment involving S;. If §; is not
allowed by B to use a value for the second field that it has used before; B in that
case will reject the corresponding deposit. (Alternatively, B could require S; to use a
distinct value for the second field only in case it receives a certified public key that it
has received before. It could even require S; to reject the payment in that case. Since
this approach requires S; to compare each payment to earlier ones, and we have to fix
a strategy in view of the statements that will be proved in Sect. 5, we do not adopt

this strategy here.)
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5

d := H(h}, spec, al)
d :=d+ s3 mod ¢

dl
(—
w; stored?
r; .= d'zy; + w; mod ¢

erase w;
T

0
rip—d -
gi'h; © =a;

To; := dxo; + wo; mod ¢

T1; = T; + wy; mod g

(h;7 a’;)’ (065 Té); (TOia Tli)
—_—
d := H(h., spec,a})
‘?
90”91 (h) ™ = a
r! 7
H(hohi, ai, go° (hohi) =) = ¢

29 79

FIGURE 2: The Payment Protocol.

Note that it has implicitly been assumed in the description of the payment protocol
that C; can determine the appropriate values for spec by itself. Alternatively, S; could
provide C; with spec or the appropriate value of one of the fields. Since it is of no
concern to the payer whether d has been formed correctly, S; could even provide C;
with d. None of these alternative approaches, or a combination of them, makes a
difference with respect to the statements that are proved in Sect. 5, and the adopted

approach is only for definiteness.

4.5 The Deposit Protocol
If S; accepted in the payment protocol, then it can deposit the electronic coin in its
account with B by performing the following protocol:

Step 1. S; sends the payment transcript, consisting of (hl,a}), (¢}, 74), (r0i, 71:) and

79 1

spec, to B.



5. Correctness of the System 14

Step 2. B computes d := H(h., spec,a;), and accepts the payment transcript if and

only if spec has not been used before, and

grgri(h)™ =a, and H(hohl, d} ggé(hohg)_cﬁ) = .

77 1)

If B accepts the payment transcript, it credits the account that is specified by

the value of the first field of spec by the value of the electronic coin.

! !

B accepts if and only if it accepts the payment transcript, and (hl, a!

tal), (¢, rpy) is not

already in the deposit database (as part of some other payment transcript). If B
! !

accepts, it stores (h}, a!

), (ch,78), (spec,ry;) in its deposit database.
Note that we have defined two different notions of acceptance for B. Furthermore, a
payment transcript encompasses a certified public key, which makes sense because we

identified each electronic coin with a unique certified public key.

4.6 Tracing a Double-Spender

In case B accepted the payment transcript but did not accept, the deposited electronic
coin must have been double-spent (implying that the tamper-resistance of at least one
device has been compromised). B then proceeds as follows. Using the pair (spec*, r7;)
for the payment transcript that is already in the deposit database, it computes (ry; —
ry;)/(d—d*) mod g, where d* := H(h}, spec*, a;). It then searches its account database
for an entry that contains this identification number; the identity description in the

resulting entry reveals the user that is responsible for the fraud.

5. CORRECTNESS OF THE SYSTEM
In this section we will assess the correctness of the presented cash system. The presen-

tation is divided into three parts: completeness, privacy of payments, and security.

5.1 Completeness
Following Feige, Fiat and Shamir [21], we denote by Z a party Z that follows the
protocols, and by Za party Z with unlimited computing power that may deviate from

the protocols in an arbitrary way. Z denotes either one of these.
The following result states that withdrawn electronic coins can be spent, if only the

(computer of the) user follows the protocols.

Proposition 1 IfC; accepts in the withdrawal protocol, and accepts the response of T;

in the payment protocol, then S; accepts in the payment protocol.
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Proof S; accepts if

g i (k) ! =} and H(hoh, al, g (hoht) b) = cf,

1) )

where d := H(h!, spec, a’). In Step 2 of the withdrawal protocol, C; computes

a; = gg%gr hi*a; and ¢ = H(hohl, a}, g5 (hohi)*?ap).

) )

Therefore it suffices to prove that
g g7 ()™ = givigi hPa; and gy (hoh) ™ = g3 (hohi)ag
for the assignments made by C; in the protocols. The first equality follows from

g9 ()™ = g5™ g (95" i)™
— ggoi—dzoig?ihfd

= gyoigrih; T

_ wo; ri+wi; g s3—d'
= G0 91 h;
wo; W

= g3%g " hi*grh; !

(i) wo; W13 h-?Ba/ 3
7 (2

= 90 %

and the second from

g (hoht) ™0 = g " VE (o g hy) =4
= gt (hohi) ™
= 95" 9" (hohs)™ ™
= g5 (hohi)*gg° (hohi)™*
2 g3 (hoh)ap.

The substitution in (x) is allowed because C; accepts the response of 7; in the payment
Ci

protocol only if g5 h; ¢ — g, and that in (xx) is allowed because C; accepts in the

withdrawal protocol only if gg°(hoh;) ™ = ay. O
Note that this completeness result holds for all B and 7;, not only for B and 7.
Our next result shows that the service provider can deposit the electronic coins that

it receives in the payment protocol.

Proposition 2 If S; accepts in the payment protocol, and deposits the payment tran-

script in the deposit protocol, then B accepts.
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Proof This is immediately clear from the fact that the value of the first field differs
per service provider and S; does not use the same value for the second field in two
different payments, since the verification relations that are applied by B in the deposit

protocol are the same as those applied by S; in the payment protocol. O

This concludes our assessment of the completeness properties.

5.2 Privacy

We will now investigate in what sense the privacy of honest payers is guaranteed.

Lemma 3 For any C;, for any possible view of B in an ezecution of the withdrawal
protocol in which C; accepts, for any possible view Ofg; in an execution of the payment
protocol in which the computer controlled by the other party follows the protocol, and
for any possible view of T; in (i) the exzecution of a withdrawal protocol in which C;
accepts and (i) a corresponding execution of the payment protocol in which C; accepts
the response of T;, there is exactly one set of random choices that C; could have made in
the execution of the withdrawal protocol such that the views of B, :S'VJ and T; correspond

to the withdrawal and payment of the same electronic coin.

Proof We first consider the relations that must be satisfied by definition. The re-
sponse 7o of B in the withdrawal protocol is such that gi°(hoh;)™® = ag, since C;
accepts in the withdrawal protocol. By Proposition 1, we can assume that the rela-

tions gg®g7"(ht)~¢ = @} and H(hoh!, al, 986 (hoh})~%) = ¢} are satisfied in all views of
S;

j
payment protocol. Since C; accepts the response of 7; in the payment protocol, it must

be that ¢7'h; ¢ = a,.

in executions of the payment protocol with a party whose computer follows the

We correspondingly define the following sets:

Views(B) = {(ao,co,70) | a0 € G4 and co, 79 € Z, such that
90" (hohi)™® = ao},
VieWS(SNj) = {(h},a}, cy, 4, 110y Tois d) | hiyay € Gy, T4y T, Toi € Zyg

and ¢}, d € Zy» such that gi%g¢;"(h})* = a} and
H(hohl, af, g (hoh?) ™) = ¢},

Views(Z;) = {(ai,d',7;) | a; € G and d',r; € Z, such that ¢['h;? = a;},

ChOiCGS(C{) = {(:CO’L', Wosy W1sy S14 S2, 83) | Zois Woir Wiy S1, S2, 83 € Zq}
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We will show that for all B-view € Views(B), for all S;-view € Views(S,), and for
all T.-view € Views(’j;), there is exactly one tuple (xo;, wo;, wis, 1, S9, $3) € Choices(C;)
such that B-view, :S;-view, and Z;-view correspond to the withdrawal and payment of
the same electronic coin. We must take into account that B can make smart choices

for its public key (q, go, 91, ho, H(-)) and for h;.

Suppose that g—view, SNj—VieW, and T;-view correspond to the withdrawal and pay-
ment of the same electronic coin. We will successively determine uniquely the numbers
T0i, Woi, Wis, S1, S2, 53 that must have been chosen by C;. First, zq; is uniquely deter-
mined from h;, h; as xo; = log,, (h;/h;). Note that zy; exists and is uniquely defined,
since ¢ is prime and hence gy # 1 is a generator of G,. From ry;, d, and x(; we see that
the choice wy; = ro; — dzo; mod ¢ must have been made, and from ry;, r; it follows that
wy; = r1; —r; mod ¢ must have been chosen. The choice for z¢; together with 7o, rj and
¢y, determines s; as §; = ry—ro— cuxo; mod ¢, and s, is uniquely determined from ¢y, cf,
as sy = ¢g — ¢y mod ¢. Finally, the numbers d, d' determine s3 as s3 = d' — d mod q.

Note that each of wy;, w1, 51, S2, 53 exists and is uniquely defined, because Z, is a field.

For these choices of the six variables all the assignments and verifications in the two
protocol executions would be satisfied by definition, except maybe for the assignments
al = gy ¢\’ hi*a; and ¢ := H(hoh!, a;, g5' (hohi)*?ao) that must have been made by

C; in the withdrawal protocol. To prove that these assignments hold as well, we notice
that from S;-view € Views(S;) we have that

g g (k)™ =di and  H(hohl, al, go’ (hoht) ™) = cb.

2 )

Therefore, the proof is completed if
g5 g (k) = g§ g hia; and g (hohl) b = g (hohi) o

for the choices for z¢;, wo;, w1, 51, s2 and s3 made above. This can be derived exactly
as in the proof of Proposition 1, considering that in this case the substitution in (x) is

allowed because Z-view € Views(7;), and (xx) because B-view € Views(B). O

Proposition 4 If C; follows the protocols, and does not double-spend, then no shared
information can be developed between B, T;, and all service providers S; in the erecu-
tions of the withdrawal and payment protocols that C; takes part in.

Proof This is an immediate consequence of Lemma 3 and the fact that C; in the

withdrawal protocol generates tuples (xg;, wo;, w;, 1, S2, $3) uniformly at random from

Choices(C;). O
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In other words, the privacy of the payments of honest users is protected with respect
to the most stringent criterion conceivable. (See Cramer and Pedersen [15] for the

definition of shared information.)

5.8 Security
We first will state the assumptions that underly the security of the cash system, and

investigate their plausibility.

Although in principle it is easier to forge Schnorr signatures in the blind Schnorr
signature scheme than in the non-interactive scheme, since m can be chosen depending
on a and the challenge can be freely chosen, the blind Schnorr signature scheme is

generally believed to be unforgeable. This motivates our first assumption.

Assumption 1 For anyl > 0, no probabilistic polynomial-time verifier can determine
with non-negligible probability of success | + 1 distinct pairs, consisting of a message
and a corresponding Schnorr signature, by performing | executions of the blind Schnorr

signature issuing protocol with P.

A result of Chen, Damgard and Pedersen [14] provides some additional evidence in
support of this assumption, albeit that the attack that they rule out only relates to

sequential executions of witness hiding proofs of knowledge.

We can distinguish in Assumption 1 between sequential and parallel executions of the
blind Schnorr signature issuing protocol; it is not impossible, although highly unlikely,
that the sequential version is secure whereas the parallel version is not. For the purpose
of the results that will be proved shortly, we will allow the attacker in Assumption 1

to run executions of the protocol in parallel.

To introduce our second assumption, we consider the following modification of the
Schnorr identification scheme. Instead of using a fixed, randomly chosen A, P generates
h at random in each execution of the protocol, and transfers it along with a in Step
1. We can consider h, or (h,a) for that matter, as a one-time public key of P. The
proof of soundness for the Schnorr identification scheme clearly applies also to the
modified protocol. In particular, if P can compute correct responses with respect to
two different challenges of V, then P “knows” log, h. We again apply the general
technique of [22] to convert this modified protocol into a signature issuing protocol;

this time we must correspondingly take ¢ := H(h,m,a). The applicability of the
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general technique suggests that it should be infeasible to find triples h,m, (¢, r) such

that ¢ = H(h, m,g"h¢). We now state our second assumption:

Assumption 2 There ezxists a probabilistic polynomial-time Turing machine M (the
knowledge extractor) such that for any probabilistic polynomial-time Turing machine A
with work tape WT and random tape RT, and any sufficiently large security parameter
k, if A on input (g, g) outputs with nonnegligible probability of success a triple h,m, (¢, )
such that

c¢=H(h,m,g"h™°),

then M(A,WT,RT,(g,q)) = log, h with non-negligible probability.

Since h can be chosen by A, this assumption is at least as strong as the assumption
that matching the verification relation for the Schnorr signature scheme is infeasible
without knowledge of the secret key: there may be negligibly many known values of A
for which forgery is easy, while the probability that such an h is chosen as the public
key in the Schnorr signature scheme is negligible. However, the fact that we arrived at
the modified scheme by applying the technique of [22] to a sound proof of knowledge,
that moreover is highly similar to the Schnorr identification scheme, suggests that there
must be a fundamental problem with this technique in case Assumption 2 turns out to
be false. Moreover, the attacker in Assumption 2 only is allowed to attempt to “forge”
triples from scratch, and the knowledge extractor need be successful with only non-
negligible probability. In light of this, Assumption 2 certainly seems very plausible.
Furthermore, it seems that the security statements that are based on Assumption 2
still hold if the knowledge extractor can extract only a “non-trivial” part of log, h (e.g.,

half of the bits), although I have not been able to come up with corresponding proofs.

To show that the system is secure for the bank, three key properties have to be

proved. Informally, these are:

1. No conspiracy can forge a payment transcript.

2. If the bank discovers that a coin has been double-spent, then its procedure for
tracing a double-spender results in the identification number of a member of the

conspiracy that has committed the fraud (second line of defense).

3. No conspiracy can double-spend a coin without first having to physically extract

the secret key of at least one tamper-resistant device (first line of defense).
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Once these three key properties have been shown to hold, other properties (e.g., the
infeasibility to deposit a wire-tapped payment transcript to another account, or to
spend a wire-tapped coin of another party) can easily be proved. For this reason we

will focus on proving the key properties.

In all the statements that will be proved the bank is assumed to be honest. This
implies that all the tamper-resistant devices follow the protocols as well. Almost all our
proofs involve the construction of a simulator that interacts with a particular prover,
in order to be able to respond to all possible challenges of a conspiracy (with the
probability distribution that applies when the honest bank is involved, regardless of
the strategy that is being followed by the conspiracy); the result of the attack of the
conspiracy can then be shown to contradict some appropriate initial assumption on
the amount of information that can be retrieved from the prover (e.g., Assumptions 1
and 2). Of course, in the situation where a conspiracy can physically extract the secret
key of a tamper-resistant device of one of its members, it in fact makes no sense to
simulate it, but we will not make this distinction in the description of the simulators.
We will furthermore describe only the vital parts of each simulator. For instance, to
simulate the opening of an account, we will only describe the information that the bank
makes available to the party that opens an account. Likewise, we will not explicitly
describe the simulation of the payment and deposit protocols in case it is obvious how
to do this.

In most proofs we will construct a simulator A that moves to a third step only after
[ executions of the withdrawal protocol (and payment protocol, on occasion) have been
simulated. In these cases there may be a possibility that all the users in the system
stop to perform the withdrawal protocol before [ executions have been performed. To
ensure that A always halts in polynomial time we can of course let A halt if some time
has expired without any requests for executions of the withdrawal protocol. For clarity
in exposition, we will not introduce a notion of #ime, and instead leave it to the reader

to fill in this detail. The presence of such a mechanism will be assumed implicitly.

There are some subtle issues involved in defining the notion of a conspiracy. Without
going into further detail on this matter, we will adopt the following definition. We
divide the set of all users and service providers in the system into two subsets. One
subset contains all the users and service providers that always follow the protocols,
and the complementary subset is called the conspiracy. A conspiracy can be viewed

as one probabilistic polynomial-time algorithm, composed of its members. Note that
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the conspiracy does not necessarily have to consist of parties that cooperate; every
party that, at one time or another, deviates from an execution of the protocol, is a
member of the conspiracy. We will furthermore assume at all times that a conspiracy
can physically extract the secret keys of the tamper-resistant devices of its members
(unless explicitly indicated otherwise), and can wire-tap into protocol executions of
honest users.

We will also prove some results with respect to a conspiracy that has only one user
as its members. More specifically, we allow the conspiracy to only make use of the
(views in the) protocol executions of one user. In other words, such a conspiracy
cannot “wire-tap” into the protocol executions of other users, or cooperate with other
users. The results of these proofs provide good evidence that the particular attacks
that they exclude are infeasible even when applied by a general conspiracy. The reason
for this is that different users in the cash system are not allowed to run their executions
of the (withdrawal) protocol in parallel, and so a general conspiracy hardly has any
advantage over the conspiracy that has a limited view; executions of the withdrawal
protocol with respect to one account can only benefit from executions with respect to
other accounts that have already been completed, such as previously retrieved triples
that meet a certain verification relation. In effect, there is no co-operation possible
between different users while performing executions of the withdrawal protocol. (See
Sect. 6 for a good example of the added power that comes from the ability of different
users to cooperate in determining their challenges in the withdrawal protocol.) The
conspiracy with a limited view will be denoted by 7//1:-, to emphasize that it can only

make use of the protocol executions of U;.

In all statements, the involved probabilities are taken over the coin tosses of the
conspiracy, over the public keys of B and (all ) 7;, and their coin tosses in the protocols.
In case the security statements apply to any conspiracy, the probabilities are also taken
over the coin tosses of the honest parties in the system, since their views might be of

help to a conspiracy.

We start with two lemmas, in order to prove our first proposition.

Lemma 5 If the blind Schnorr signature scheme is witness hiding, then no conspiracy

can compute log, g1 with non-negligible probability of success.

Proof Suppose that a conspiracy can misuse any [ executions of the withdrawal

protocol to extract with non-negligible probability of success log, g1. We will construct
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a polynomial-time algorithm A for extracting the witness of the Prover P in the blind

Schnorr signature scheme.

Algorithm A, on input a random public key (g, g, h, H()) of P (i.e., as generated
by the key generation algorithm for the blind Schnorr signature scheme), performs the

following steps:

Step 1. (Simulate the initial key generation.) Set gy := g and ¢; := h. Generate at

random an element zgy € Z,, and compute hg := g5*

of B is (¢, go, 91, ho, H(:))-

. The simulated public key

Step 2. For each party in the cash system, simulate the actions that B and 7Z; would

perform. For a user U;, perform hereto the simulation as follows:

e (Opening an account.) Generate at random a secret key z; € Z, for 7;, and

the corresponding public key h; := g7*.
e (The withdrawal protocol.)
Step 1. [Simulate 7;.] Generate at random a number w; € Z,, and send
a; == g7" to U;.
Step 2. [Simulate B.] Receive a from P, and pass ap := a®' on to U;.
Step 3. [Simulate B.] Receive ¢y from U;, and pass ¢ := ¢y on to P.
Step 4. [Simulate B.] Receive 7 from P, and pass g := ;7 + coZoo mod ¢

on to U;.

e (The payment protocol.) This can be handled as in the description of the

cash system, since zy; is known.

Continue this simulation until / executions of the withdrawal protocol have been

performed.
Step 3. Check if the conspiracy has log, g; on its tapes. If not, then halt.

Step 4. Output log, g:.

By definition of the key generation of P, and that of A, the public key in Step 1
is simulated with the same probability distribution as that by which B generates its
public key. Likewise, the key generation for 7; is performed with the same probability
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distribution. The response that is computed by A in the simulated withdrawal protocol

is the same as the response that B would compute:

(987 (5)°
()
O (g
(
(ho

9%’ = 9o

-'1711,60 hCO

= 0
h g 11)60(1’0

) Oa/Oa

where the substitution in (x) is allowed because the response of P in the blind Schnorr
signature issuing protocol is always correct. From this it easily follows that the views
provided by A are the same as those provided by B in the real cash system (regardless
of the probability distribution by which the conspiracy generates its challenges). This
obviously holds also for the simulated executions of the payment protocol, and Step
1 of the simulated executions of the withdrawal protocol. Note that A provides for
the possibility of parties to physically extract the secret key of 7;, because it generates
x1; for all users by itself. Hence, Step 4 is reached by supposition with non-negligible

probability.

To complete the proof, observe that an execution of each of Steps 2, 3 and 4 of the
simulated withdrawal protocol constitutes exactly one execution of the blind Schnorr
signature issuing protocol with P. For the output of A in Step 4 we have log,, g1 =
log, h, which is the witness of P. Since A performs only polynomially many executions
of the protocol with P, this contradicts the assumption that the blind Schnorr signature

issuing protocol is witness hiding. O

The proof of the following lemma is trivial, and is therefore omitted.

Lemma 6 If Assumption 1 is true, then the blind Schnorr signature scheme is witness
hiding.

Definition 1 A conspiracy is said to be able to forge a certified key pair if it can
compute with non-negligible probability of success | + 1 distinct certified key pairs by

performing | executions of the withdrawal protocol with B, for some | > 0.
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Proposition 7 If Assumption 1 is true, then no conspiracy can forge a certified key
PaIT.

Proof Suppose that a conspiracy can misuse any [ executions of the withdrawal
protocol to extract with non-negligible probability of success [* distinct certified key
pairs, with [* > [. We will construct a polynomial-time algorithm A for breaking

Assumption 1.

Algorithm A, on input a random public key (g, g, h, H(+)) of P, performs the following
steps:

Step 1. (Simulate the initial key generation.) Set go := g and hy := h. Generate at

random an element z,9 € Z,, and compute g; := gy*°. The simulated public key
of B is (Q7 90, 91, hOa H())

Step 2. For each party in the cash system, simulate the actions that B and 7; would

perform. For a user U;, perform hereto the simulation as follows:

e (Opening an account.) Generate at random a secret key zy; € Z, for 7;, and
the corresponding public key h; := g7*.
e (The withdrawal protocol.)
Step 1. [Simulate 7;.] Generate at random a number w; € Z,, and send
a; ;== g;"* to U.
Step 2. [Simulate B.] Receive a from P, and pass ag := a on to U;.
Step 3. [Simulate B.] Receive ¢y from U;, and pass ¢ = ¢y on to P.
Step 4. [Simulate B.] Receive r from P, and pass 7y := 7 + cyZ1071; mod g
on to U;.
e (The payment protocol.) This can be handled as in the description of the

cash system, since zy; is known.

Continue this simulation until / executions of the withdrawal protocol have been

performed.

Step 3. Check if the conspiracy has [* distinct certified key pairs on its tapes. If not,
then halt.

Step 4. For each of the [* distinct certified key pairs, ((z(,;,z};), (wp;, wy;)), (ki al),

ro . ! A ro_ | /
(cy,73), compute m’ := (hoh},al), ¢ := ¢f and r' := r{ — ci(zy; + z107;) mod g,

and output m/, (¢, ).
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By definition of the key generation of P, and that of A in Step 1, the public key
in Step 1 is simulated with the same probability distribution as that by which B
generates its public key. Likewise, the key generation for 7; is performed with the
same probability distribution. The response that is computed by A in the simulated

withdrawal protocol is the same as the response that B would compute:

T+C0ZT10%14

9% = 9%
— gr(g(ﬂ;lo)coﬂiu
) c T1i
= (h%a)(gr™)"
= hQaohl®

= (hohi)®ay,

where the substitution in (x) is allowed because the response of P in the blind Schnorr
signature issuing protocol is always correct. From this it easily follows that the views
provided by A are the same as those provided by B in the real cash system (regardless
of the probability distribution by which the conspiracy generates its challenges). This
obviously holds also for the simulated executions of the payment protocol, and Step
1 of the simulated executions of the withdrawal protocol. Note that A provides for
the possibility of parties to physically extract the secret key of 7;, because it generates
x1; for all users by itself. Hence, Step 4 is reached by supposition with non-negligible
probability.

We next show (i) that the output of A consists of [* messages with corresponding
Schnorr signatures, and (ii) that all these pairs are distinct with at least overwhelming

probability. Property (i) follows from

!/
C =

Q
o~

holt,, a, i (hohl) =)

1) ’L,

I
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= H
= H

(h
(m'
(m 9 hoco)
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where the substitution in (x) is allowed by definition of a certified public key.

To prove property (ii), consider any two certified key pairs,

((3301, 3311'), (woz', wu)), (hi, ai); (CO, 7"0)
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and

((z5:> 27), (wgi, w,))s (B, a7), (c5, 75)-
Suppose that the two corresponding pairs, as computed by A in Step 4, are identical.
Denoting (hoh;, a;) by m, and (hoh?,a}) by m*, the two pairs are m, (co, 79 — co(xo; +
T1071;) mod ¢) and m*, (cf, 5 — ch(x}; + T1077;) mod ¢). We will prove that if these
two pairs are identical, then the two certified key pairs are identical. Applying the
definition of a certified public key to the two certified key pairs, we have

co = H(hohi, ai, gg° (hoh;) ™)

and
¢y = H(hoh?, af, gy (hoh) ™).

From m = m* it follows that h; = h} and a; = a;. Since we also have ¢y = cj mod ¢

by equality of the two corresponding pairs, it follows that
H(hohs, i, g (hohi) ™) = H(hohi, as, gi’ (hohi) ™).

Because H(-) is collision-intractable, gg°(hoh;) ¢ = 983 (hoh;)~¢ with overwhelming
probability, and hence ry = 7§ mod ¢ with overwhelming probability. This leaves us
with the possibility that ((xo;, 1), (woi, w1;)) differs from ((zf;, z3;), (w;, w3;)). Sup-
pose that zq; # zf;, mod ¢ (the other possibilities can be taken care of in exactly the

same way). Then from gy”¢7" = h; = h} = gga" gfﬁ it follows that

(z1;—z13)/(0i—2p;)
1

go =49

Y

and so log, g1 = (23; — 71:)/(w0; — 23;) mod ¢. Since the certified key pairs in Step
4 are known by the conspiracy, while its view in the simulation is exactly the same
as in the real cash system, this means that the conspiracy has been able to determine
log,, g1 According to Lemma 6, the blind Schnorr signature scheme is witness hiding if
Assumption 1 is true, and so by Lemma 5 we have a contradiction with Assumption 1.

So the certified key pairs are equal, and hence property (ii) holds.

To complete the proof, observe that an execution of each of Steps 2, 3 and 4 of the
simulated withdrawal protocol constitutes exactly one execution of the blind Schnorr
signature issuing protocol with P. Because of this one-to-one correspondence, A per-
forms in total [ executions of the blind Schnorr signature issuing protocol. This con-

tradicts Assumption 1. O
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In combination with Proposition 1, which shows that an honest user receives a certified
key pair when it performs an execution of the withdrawal protocol, this result tells
us that there is a one-to-one correspondence between executions of the withdrawal

protocol and certified key pairs.

Definition 2 A conspiracy is said to be able to forge a payment transcript if it can
compute with non-negligible probability of success | + 1 payment transcripts, the certi-
fied public keys of which are all distinct, by performing | executions of the withdrawal
protocol with B, for some | > 0.

Note that a payment transcript is not considered to be forged if it encompasses a
certified public key that is part of another payment transcript; as described in Sect. 2
each electronic coin is uniquely associated with a unique certified public key. The
ability to output [+ 1 different payment transcripts that encompass the same certified
public key, after having executed [ executions of the withdrawal protocol, is captured
by the notion of double-spending; the infeasibility to double-spend without physically
compromising a tamper-resistant device (breaking the first line of defense) is covered
by our assessment of the third key property, and the infeasibility to double-spend an
electronic coin (after having physically extracted the secret key of a tamper-resistant
device) without being traceable (breaking the second line of defense) is covered by our

assessment of the second key property.

The result of Proposition 7 brings us a long way towards a proof of the first key
property. The design of a clean-cut reduction to prove this key property unfortunately
turns out to require a rather cumbersome formulation of a third plausible intractability
assumption, which moreover is not needed in any of our other results. So we will instead
only sketch here why the first key property should hold, on the basis of the result of
the previous proposition. Consider a conspiracy that has forged a payment transcript

(hi,al), (ch,7h), (roi,71;) and spec, and let d = H(h!, spec,al). Since B accepts the

payment transcript, the relations g;% g7 (k)¢ = a} and H(hohl, a’, ggé’(hoh;)*%) = ¢}
hold. From this, it seems that we may conclude that the conspiracy must know a
pair (eg,e;) such that hi = g&g?. It follows that a} = g5 “%gr% “¢ and so the
triple ((eo, e1), (ro; — €od,71; — €1d)), (hi,al), (cy,5) is a certified key pair. Since the
payment transcript has been forged, the certified public key of this certified key pair
differs from those extracted in executions of the withdrawal protocol. In other words,
the forgery of a payment transcript seems to imply the forgery of a certified key pair,

which contradicts Proposition 7.
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This settles our assessment of the first key property. We now turn to the second key
property.

The following proposition states that the identification number x;; is invariant under
all blinding operations that U; can perform in the withdrawal protocol. The fact that we
can prove this result under a rather weak assumption is perhaps the best demonstration
of the power of the secret-key certificate technique. It is not a complete proof of the

second key property, but certainly goes a long way.

Proposition 8 If the Discrete Log assumption and Assumption 2 are true, then Z//{\,
cannot withdraw with non-negligible probability of success a certified key pair ((xo;, 23;),
(wos, w1;)), (hiya;), (co,m0) for which x3, differs from his identification number x1;.

Proof Suppose that U; can misuse [ executions of the withdrawal protocol to extract
with non-negligible probability of success a certified key pair such that =3, # x1; mod gq.
We will construct a polynomial-time algorithm A for computing discrete logarithms in

G,

Algorithm A, on input a random triple (g, g, h), performs the following steps:

Step 1. (Simulate the initial key generation.) Set gy := g and g; := h. Generate

at random an element zoy € Z, and an element z;; € Z,, and compute hy :=

00

90
the Schnorr signature scheme. The simulated public key of B is (g, go, g1, ho, H(+)).

g1 °*. Generate H(-) in the same way as described in the key generation for

Step 2. Simulate for U; the actions that B and 7; would perform, as follows:

e (Opening an account.) Use zy; as the secret key for 7;, and compute the
corresponding public key as h; := gi*.
e (The withdrawal protocol.)
Step 1. [Simulate 7;.] Generate at random a number w; € Z,, and send
a; := g,"* to U;.
Step 2. [Simulate B.] Generate at random an element wy of Z,. Compute
ag := gy°, and send ag to U;.
Step 3. [Simulate B.] Receive ¢, from ;.
Step 4. [Simulate B.] Compute 7 := coZg + we mod g, and send 7y to Us.
e (The payment protocol.) This can be handled as in the description of the

cash system, since zy; is known.
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Continue this simulation until / executions of the withdrawal protocol with U

have been performed.

Step 3. Check if ; has on its tapes a certified key pair (i, 23;), (woi, w1i)), (AL, al),
(cp, ry) such that 2%, # z1; mod ¢. If not, then halt.

Step 4. Run the knowledge extractor M on all tapes of A and U, (viewed as a combined
Turing machine—this detail can easily be filled in). Denoting the output of M

by e, compute (e — xog — Zo;)/(x]; — £1;) mod ¢, and output the outcome.

Note that we have made use of the knowledge extractor M of Assumption 2 in Step

4 of this simulation.

By definition of the key generation of A in Step 1, the public key in Step 1 is
simulated with the same probability distribution as that by which B generates its
public key. Likewise, the key generation for 7; is performed with the same probability
distribution. The response that is computed by A in the simulated withdrawal protocol

is the same as the response that B would compute:

CoToo+wo

0 )Co 9(1)1)0

g1")*ao
0-

0
hi)coa

T0o —_
99 =

90

(90
(ho
(ho
From this it easily follows that the view of U; that is provided by A is the same as that
provided by B in the real cash system (regardless of the probability distribution by
which Zj{\, generates its challenges), despite of the tricky way in which A generates hy.
This obviously holds also for the simulated executions of the payment protocol, and
Step 1 of the simulated executions of the withdrawal protocol. Note that A provides
for the possibility of U; to physically extract the secret key of 7;, because it generates
x1; by itself. Hence, Step 4 is reached by supposition with non-negligible probability.

The output e of M in Step 4 is equal to log, (hoh;) with non-negligible probability,

and in that case,

00— T log, (hoh!) —(z00+z0;)
e—To0—Toi  __ 90 i 00+T0;
90 = 9 90
_ 1\ . —(zoo+zo:)
= (hoh,-)go
_ To0 ,—T1i 0 13\ ,—(Zoo+To:)
= (95"91 "M 95"9:") 90
_ T

= 0
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Since z7j; # x1; mod ¢, and g = gy and h = g;, it follows that

g(logg0 (hoh})—zoo—moi)/(z7;—T1i) _ h,

and so the output of A in Step 4 is equal to log, h with non-negligible probability. This
contradicts the Discrete Log assumption. Hence, if Assumption 2 and the Discrete Log
assumption are true then it cannot be the case that z7, # x1; mod ¢ with non-negligible

probability of success. O

Note that this result holds independent of whether the executions of the withdrawal

protocol by U; are performed sequentially or in parallel.

In general no conspiracy must be able to compute a certified key pair for which z7;
is different from the identification numbers of each of its members. Proposition 8, and
the fact that the withdrawals of different users can only be run sequentially, seem to
justify the following conjecture.

Conjecture 1 No conspiracy can withdraw with non-negligible probability of success
a certified key pair ((xoi, x7;), (Woi, w15)), (R, a;), (co,m0) for which x3; differs from the

wdentification numbers of each of its members.

We are now prepared to prove the second property. We start once more with a
statement related to conspiracies with a limited view, to show that we do not need to

rely on Conjecture 1 in this case.

Proposition 9 If the Discrete Log assumption and Assumption 2 are true, then the
following holds. If?j{\,- double-spends an electronic coin, and the corresponding payment
transcripts are accepted by B in the deposit protocol, then the procedure for tracing a

double-spender results with overwhelming probability in the identification number on//l\i.

Proof Denote the two corresponding payment transcripts by

(h;’ a{i)a (d)a T6)7 (TO’ia Tli)a spec

and

(h;’ ag)a (06’ T(,))’ (T&'a sz’)a spec*.
Since B has accepted the payment transcripts, spec is not equal to spec*. Denoting
H(R., spec,al) by d, and H(h., spec*,a.) by d*, we hence have d # d* mod ¢ with

overwhelming probability; otherwise H(-) is not collision-intractable.
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It furthermore follows from the acceptance by B of the payment transcripts that

h, _ g(()v“gi _T&)/(d_d*)gy“ —r3;)/(d—d*)

and

gl = gl T/ (@ =) (@ ridr) (4 =)

Hence the triple (((ro;—73;)/(d—d*) mod g, (r1;—77;)/(d—d*) mod q), ((d*re;—dr§;) /(d*—
d) mod g, (d*ry; — dry;)/(d* — d) mod q)), (k. al), (¢, ry) is a certified key pair. By

Proposition 8, (ry; — r3;)/(d — d*) must with overwhelming probability be equal to the

identification number of Z//{\Z . O

In exactly the same way, we can prove the following result.

Proposition 10 If the Discrete Log assumption and Conjecture 1 are true, then the
following holds. If a conspiracy double-spends an electronic coin, and the correspond-
ing payment transcripts are accepted by B in the deposit protocol, then the procedure
for tracing a double-spender results with overwhelming probability in the identification

number of one of its members.

This concludes our assessment of the second key property. We now turn to the third

key property.

Proposition 11 Assume that the blind Schnorr signature scheme is witness hiding,
and that Assumption 2 is true. If it is infeasible to physically extract the secret key
of T;, then U; cannot withdraw with non-negligible probability of success one electronic

coin that is accepted twice by B in the deposit protocol.

Proof Suppose that U; can misuse [ executions of the withdrawal and payment protocol
to extract with non-negligible probability of success one electronic coin that can be
deposited twice. We will construct a polynomial-time algorithm for extracting the

witness of P in the blind Schnorr signature scheme.

Algorithm A, on input a random public key (g, g, k, H(+)) of P, performs the following
steps:

Step 1. (Simulate the initial key generation.) Set g; := g. Generate at random an

element xoy € Z, and compute hg := g;®h~', and generate gy at random from

G, \ {1}. The simulated public key of B is (g, go, 91, ho, H(*)).
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Step 2. Simulate for U; the actions that B and 7; would perform, as follows:

e (Opening an account.) Let h; := h be the public key of 7;.
e (The withdrawal protocol.)

Step 1. [Simulate 7;.] Receive a from P, and pass a; := a on to ZZ

Step 2. [Simulate B.] Generate at random an element wy € Z,, compute

ag := ¢°, and send ag to U;.

Step 3. [Simulate B.] Receive ¢, from ;.

Step 4. [Simulate E.] Compute 7y := coxgo + wo mod ¢, and send 7y to Zjl:
e (The payment protocol.)

Step 1. [Simulate 7;.] Receive d’ from ZZ-, and pass ¢ := d' on to P.

7;

Step 2. [Simulate 7;.] Receive r from P, and pass 7; := r on to U.

e (The deposit protocol.) Receive a payment transcript, (h},a’), (cf,75),

29 1

(roiy T14), spec, from U;.

Continue this simulation until [ executions of the withdrawal and payment pro-

tocol have been performed by Us.

Step 3. Check if one of the pairs (h}, a

27 ’L

1), (ch,1p), received as part of a triple in the

simulated deposit protocol, has been deposited twice. If not, then halt.

Step 4. Denoting the additional information that has been deposited by U along
with the pair (h},a’), (cy, ) by (spec,ri;) and (spec*,rj;) respectively, and
H(h%, spec,al) by d and H(h., spec*, al) by d*, compute (r; —r7;)/(d—d*) mod q

and output the result.

By definition of the key generation of P, and that of A in Step 1, the public key in Step
1 is simulated with the same probability distribution as that by which B generates its
public key. Likewise, the key generation for 7; is performed with the same probability
distribution. The response that is computed by A in the simulated withdrawal protocol

is the same as the response that B would compute:

coTo0+wo

9% = 9%

= (9")°9
(hoh)®aq
(hohi)“a
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Likewise, the response that is computed by A in the simulated payment protocol is the

same as the response that 7; would compute:

T

g =g
(;) hta

— d

where the substitution in (x) is allowed because the response of P in the blind Schnorr
signature issuing protocol is always correct. From this it easily follows that the view of
ZZ- that is provided by A in the withdrawal and payment protocol is the same as that
provided by B and 7; in the real cash system (regardless of the probability distribution
by which U generates its challenges), despite of the tricky way in which A generates the
public key of 7;. Note that we assumed that the secret key of 7; cannot be physically
extracted by ZZ, and so it is not a problem that A does not know it (in fact, this is
essence of the simulation). Hence, Step 4 is reached by supposition with non-negligible

probability.

According to Proposition 9, which can be invoked since the Discrete Log assumption
is true if the blind Schnorr signature scheme is witness hiding, the output of A is equal
to x1; with overwhelming probability. To complete the proof, note that an execution of
Step 1 of the simulated withdrawal protocol, and the corresponding execution (if any)
of Steps 1 and 2 of the payment protocol, constitutes exactly one execution of the blind
Schnorr signature issuing protocol with P, and that A performs polynomially many of
these executions. But z,; = log, h; = log, h, and so A can apparently compute log, &
with non-negligible probability of success. This contradicts the assumption that the

blind Schnorr signature scheme is witness hiding. O

Proposition 12 Assume that the blind Schnorr signature scheme is witness hiding,
and that Conjecture 1 is true. If it is infeasible to physically extract a secret key from
any T;, then no conspiracy can withdraw with non-negligible probability of success one
electronic coin that is accepted twice by B in the deposit protocol.

Proof Suppose that a conspiracy can misuse any [ executions of the withdrawal and
payment protocol to extract with non-negligible probability of success one electronic
coin that can be deposited twice. We will construct a polynomial-time algorithm for

extracting the witness of P in the blind Schnorr signature scheme.

Algorithm A, on input a random public key (g, g, k, H(+)) of P, performs the following
steps:
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Step 1. (Simulate the initial key generation.) Set g; := g. Generate at random an
-1
element x¢y € Z, and an element 1y € Z;, and compute gg := gfw and hg := gg®.
The simulated public key of B is (g, go, g1, ho, H(*)).

Step 2. For each party in the cash system, simulate the actions that B and 7; would
perform. For a user U;, perform hereto the simulation as follows:

e (Opening an account.) Generate at random a number s; € Z;, and the
corresponding public key h; := h®%.

e (The withdrawal protocol.)
Step 1. [Simulate 7;.] Receive a* from P, and pass a; := (a*)% on to U;.
Step 2. [Simulate B.] Receive a from P, and pass ag := a on to U;.

Step 3. [Simulate B.] Receive ¢y from U;, and pass ¢ := cps; mod ¢ on to

P.
Step 4. [Simulate B.] Receive r from P, and pass 1y := coZog + Z107 mod ¢
on to U;.

e (The payment protocol.)
Step 1. [Simulate 7;.] Receive d’ from U;, and pass ¢* := d' on to P.

Step 2. [Simulate 7;.] Receive 7* from P, and pass r; := r*s; mod q on to

U;.
e (The deposit protocol.) Receive a payment transcript, (hi,al), (cg, %),

(roiy T14), spec, from U;.

Continue this simulation until [ executions of the withdrawal and payment pro-
7.

tocol have been performed by U,

Step 3. Check if one of the pairs (h},al), (cj,ry), received as part of a triple in simu-

2y 1))

lated deposit protocol, has been deposited twice. If not, then halt.

Step 4. Denoting the additional information that has been deposited along with the
! !

pair (h}, a!

R

, (¢, 4) by (spec, r1;) and (spec*, r3;) respectively, and H(h., spec, a!
00'0 p P 1z i) SP %
by d and H(h., spec*,a’) by d*, compute gY”_T“)/(d*d ). Search for a number A;
that was generated as h; := h* in the simulated procedure for opening an account

in Step 2. If such a number is not found, then halt.
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Step 5. For the value of s;, corresponding to the number h; that has been found in

the search in Step 4, compute (r1; — r3;)/si(d — d*) mod ¢ and output the result.

The response that is computed by A in the simulated withdrawal protocol is the

same as the response that B would compute:

ro coZoo+T10™
9 = 9o

= (9™)*(g5")"
= gl

= heg"

*) heo( e

= hg’(h%a)

= hh%a,

= (hohsi)coao
= (hohi)coao.

Likewise, the response that is computed by A in the simulated payment protocol is the

same as the response that 7; would compute:

r*s;

9 = aq
= (¢7)"
(Z) (hc*a*)si
= () (@)

!

The substitutions in (x) and (xx) are allowed because the response of P in the blind

Schnorr signature issuing protocol is always correct.

Since z 19 is randomly generated from Z,, instead of from Z,, the computation of g, in
Step 1 is always defined. This subtle difference in key generation implies that the views
provided by A are not the same as those provided by B and 7; in the real cash system.
However, it is easy to see that they are statistically indistinguishable, despite of the
tricky way in which A generates the public keys of the 7;’s. Note that we assumed
that the secret keys of tamper-resistant devices cannot be extracted physically, and so
it is not a problem that A does not know these secret keys (again, this is actually the
essence of the simulation). Hence, Step 4 is reached by supposition with non-negligible

probability.
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According to Conjecture 1, (r; —r};)/(d — d*) mod ¢ in Step 4 must be equal to the
identification number x1; of one of the members of the conspiracy, with overwhelming
probability. Since this identification number is equal to log, h; for the number h;
associated with this member, the search of A in Step 4 is successful with overwhelming
probability.

So Step 5 is also reached with non-negligible probability. The output of A is equal

to log, h, as can be seen as follows:

rii—ry;)/si(d—d* r1i—ry;)/(d—d*)\s1
g( 1i—7y;)/si(d—d") — (gg 1 1)/( )) ;
-1
= h
= h.

To complete the proof, notice that an execution of each of Steps 2, 3 and 4 of the
simulated withdrawal protocol constitutes exactly one execution of the blind Schnorr
signature issuing protocol with P. Likewise, an execution of Step 1 of the simulated
withdrawal protocol, and the corresponding execution (if any) of Steps 1 and 2 of the
payment protocol, constitutes exactly one execution of the blind Schnorr signature
issuing protocol with P. Hence A performs polynomially many executions of the blind
Schnorr signature issuing protocol with P, and so the construction of A contradicts

the assumption that the blind Schnorr signature scheme is witness hiding. O

Observe that A may need to perform executions of the blind signature issuing protocol
with P in parallel, even if no two executions of the withdrawal protocol would be

allowed by B to be run in parallel.

This concludes our assessment of the three key properties. It is important to ob-
serve that the presented results have been stated with respect to the worst conditions
conceivable. Various statements can be shown to hold under weaker assumptions if
the considered conspiracies are provided with less power. For example, all the results
that have been proved in our assessment of the first two key properties are true un-
der weaker assumptions if the considered conspiracies cannot physically extract secret
keys from tamper-resistant devices. We can also make use of the fact that conspira-
cies cannot learn anything from “wire-tapping” executions of the withdrawal protocol
by honest users, since these executions are perfectly simulatable as we will prove in
Proposition 14; only when they can wire-tap in addition the interaction between the
tamper-resistant devices and these users in the payment protocol can something be

learned (in an indirect way — which is highly unlikely to be useful).
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Furthermore, there are additional results that one may wish to prove. For instance,
we have not shown that it is infeasible to spend a coin once (more precisely, compute
a payment transcript) without assistance of the tamper-resistant device. The reason
for this is that there is no need to prove such a result: no damage is done if a user
can withdraw a coin that can be spent once in cooperation with a cooperating service
provider, without this requiring assistance of the tamper-resistant device. (Damage
comes only from the ability to forge a coin or payment transcript, or the ability to
spent a withdrawn coin a second time without assistance of a tamper-resistant device
— and we have assessed these attacks). Other additional results that one may wish to
prove are: the probability that two certified key pairs encompassing the same certified
public key are withdrawn (by coincidence) is negligible; it is infeasible to deposit a
wire-tapped payment transcript to another account; and, it is infeasible to spend a

wire-tapped coin of another party.

Since such modifications and additional results can easily be proved by applying the
various proof techniques that have been demonstrated in this section, they are left as

an exercise to the reader.

6. IMMUNIZATION AGAINST ATTACKS ON PARALLEL WITHDRAWALS

It can be shown that Conjecture 1 is false if B allows executions of the withdrawal
protocol to be performed in parallel with respect to two users that each have a different
identification number. The two users can then join forces to extract a certified key pair
in which neither one of their respective identification numbers is encoded.

Let z1; be the identification number of ¢/, and z7, that of U*; the corresponding
public keys of 7 and 7* are h; and h}. In its simplest form, the attack on the two
parallel executions of the withdrawal protocol is the following (the steps marked with a

period refer to the execution by U, and those marked with a star refer to the execution

by U*):
Step 1. (As in the withdrawal protocol.)
Step 1* (As in the withdrawal protocol.)

Step 2. B generates at random a number wy € Z,, and sends ag := gy° to U.

Step 2* B generates at random a number w; € Z,, and sends aj := gz)”a to U*.



6. Immunization Against Attacks on Parallel Withdrawals 38

(Preparation) U and U* compute h} := gfl” for an arbitrary identification number

x},; of their choice. They generate two random numbers wy; and w,; in Z,, and

compute a; := g5 g;"", ¢ := H(hoh}, al, apag).
Step 3. U sends ¢y := (cyxy; — chxl;)/ (x5, — x1;) mod ¢ to B.
Step 3* U* sends ¢ := (cyx); — cpx1i)/(2]; — z1;) mod ¢ to B.

Step 4. B sends 7g := ¢o(Zoo + T10%1:) + wo mod ¢ to U, and debits the account of U

by the value of the electronic coin.

Step 4* B sends 7§ := c§(zoo + T1027;) + w§ mod ¢ to U*, and debits the account of
U* by the value of the electronic coin.

U and U* accept if and only if
g5 (hohi)™ = ao and  g; (hoh})™ = aj,

If the verification holds, then U and U* compute r{ := ro + r§ mod q.

Proposition 13 IfU and U* accept, then

(Oaxlli)a(w()i’wli))’ (h’;’ z) (66,’/‘6)

s a certified key pair.

Wo, wlz

Proof It is clear that h = gg gl“ and a, = gg It remains to prove that (A}, a}),

91
(cp, rg) is a certified public key, i.e., that

¢ = H(hoh!, d\, gi (hohl) ).

[ 17
Since U and U* compute ¢ according to cf, := H(hohl, a}, apafy), this follows from:
aoaf = g5 (hohs) *gp’ (hoh}) ™
=g g TR ()
— 960‘”5 ha(CO‘FCE)gl—Comligl_caz)fi
(i_) TOhch —(cgzh—l—comh)

(*x) g Co cozl
= 90 hgy '

= 90 (hoh;)_
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The substitution in (x) is allowed because

co+cy = (corl; — coxhy)/ (2 — 21i) + (o2l — o) /(2] — 13)
= (0690’12 - C'oﬂﬂh')/(ﬂﬂi' - l"lz')
= ¢, mod g,

and that in (xx) because

coti +cory; = w1(cprl; — o) /(@] — o) + 27;(cox; — coris) /(@]; — T14)
= (3391‘10633/11 - rnCérL)/(xL — T1;)

_ (]
= c¢yxy; mod gq.
O

To prevent unduly obscuring of the description of the attack, we have not incorpo-
rated the additional computations the attackers need to perform in order to obtain the
certified key pair in a perfectly blind way.

Now, observe that both users in this attack must know their identification numbers,
x1; and z7;, before returning their challenges to B in Steps 3 and 3* (for which they
first need to break the tamper-resistance of their devices, if the assumptions and the
conjecture in the previous section are true). The resulting certified key pair can be spent
multiple times, because the procedure that is followed by the bank for tracing a double-
spender results in z},. (Note, though, that the bank will detect with overwhelming
probability that the attack has been applied, since the probability is negligible that
the identification number that is encoded in the certified key pair corresponds to some
other, “honest” user).

The following simple modification to the withdrawal protocol is believed to suffice to
make the withdrawal protocol immune to attacks such as these. Rather than computing
for each user a random number h;, the bank computes a random h; for each ezecution
of the withdrawal protocol. More specifically, B generates h; of the form h; := ¢7""?,
where y is a randomly chosen “offset” in Z, and z; is (as before) the secret key of 7;;
we will denote the public key g7 of Z; by f;, this time. (Note that B may alternatively
compute h; as h; := f;g7.) B sends h; (or, alternatively, g7) along with ag in Step 2 of
the withdrawal protocol. In Step 4, B correspondingly computes its response according
to 1o := co(xoo + T10(71; +¥)) + wo mod ¢, and sends the offset y along with ry to C;. C;

in addition verifies the correctness of y, by comparing h; for equality to f;g? (or, if B
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sent e; := g} in Step 1, by comparing e; for equality to g7). Observe that C; need not
know log,, h; in Step 3 of the withdrawal protocol, and so no other modifications to the
withdrawal protocol are needed. In Step 3 of the payment protocol, C; correspondingly
computes ry; as 7y; := 7; + d'y + wy; mod ¢; no other modifications are needed. The

modified protocols are depicted by Figures 3 and 4.

The obvious purpose of this modification is to ensure that Zj{\z cannot feasibly compute

log,, h; even if he has managed to break the tamper-resistance of his device.

w; €ER Zq
w;
a; ‘= g,
a;
_
Yy ER Zq
hi = flﬁ-y
T
Wy ER Zq
. LW
4y == gy
h’ia ()
%
Loy Wosy W15y S15 525 S3 ER Zq
/. . T0i
/. Wi W1} 83
a; = go g1 "hi’a;
/. ! ! 81
co := H(hohi, aj, go' (hohi)**ao)
¢ := ¢y + s mod ¢
Co

—
o := co(Too + Z10(z1; + Y)) + wp mod ¢

To, Y

(—

0
hi = figi
T0 —C ?
90° (hohi) = = ag

T 1= To + €yToi + 51 mod g

FIGURE 3: The Modified Withdrawal Protocol.
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S

d := H(h}, spec, a})
d :=d+ s3 mod g

d/
w; stored?
r; := d'z1; + w; mod ¢
erase w;

Ti

roeed !
91 [ ¢ =g
Toi = d-’L'Oi + Wo; mod q
ri; = 1; +d'y + wy; mod ¢

(h;, a’é)a (067 T6)7 (TOia Tli)
_—
d := H(h}, spec,al)
7
90”91 (h) ™ = a;
Tl 7
H(hoh’ a’ goo(hohg)ch) = 06

27 1)

FIGURE 4: The Modified Payment Protocol.

It is easy to see that all the statements in the previous section remain valid. Partial
proofs, based on the linearity of the determinant function and described in detail in
part (ii) of [4], strongly suggest that Conjecture 1, and all the other results that we have
proved, apply to the modified cash system even when there is no restriction whatsoever

on running executions of the withdrawal protocol in parallel.

Note that in the modified system not only can a double-spender be traced, but also
the execution of the withdrawal protocol in which the double-spent electronic coin has
been issued. This suggests that we may be able to improve on the efficiency of the
modification, and indeed we can. Since the purpose of the modification is merely to
ensure that the user cannot compute log,, h; in real time, before the challenge has to

be returned in Step 3 of the withdrawal protocol, imposing an upper limit on the delay
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in time between sending out ay and receiving ¢, allows the bank to use random offsets

y from a domain much smaller than Z,.

In order to avoid having to store one number (the offset) for each execution of
the withdrawal protocol, the bank can encode a fixed number into the offsets that it
generates in the withdrawal executions with respect to the same user. For instance,
the least couple of bytes of y can be associated by B uniquely with ;. This unique
number in effect plays the role that was played by the identification number in the

original system.

As will be obvious, similar modifications apply to any of the restrictive blind secret-

key certificate issuing protocols described in [4].

7. RELATION TO BLIND SIGNATURE PROTOCOLS

As mentioned already in the introduction, the withdrawal protocol of the new system
is not a blind signature issuing protocol. Consider a triple consisting of a secret key, a
matching public key, and a certificate on the public key. The user in the withdrawal
protocol can completely blind the public key and the certificate, but not (part of)
the secret key. If the certificate would be a public-key certificate, as is the case in
all the references mentioned in the introduction, then the protocol would indeed be a
particular case of an ordinary blind signature scheme (in which both the message and
the signature can be blinded, see Chaum [8] and his later work); the public key is the

message and the certificate is the signature on the message.

However, since the certificate in the presented system is a secret-key certificate, by
definition it is not a signature on the public key. On the contrary, pairs consisting of
a public key and a matching secret-key certificate can be generated by anyone with

exactly the same probability distribution, as shown by the following proposition.

Proposition 14 The certificates that are issued by B are secret-key certificates.

Proof We construct a polynomial-time simulation algorithm A that generates certified
public keys with the same probability as that by which they are generated in the
withdrawal protocol. On input the public key (g, go, 91, ho, H(+)) of B, A performs the

following steps:

Step 1. Generate at random two numbers z,? € Z,, and a number q; € G|,.

Step 2. Compute h; := hg'gZ, co := H(hohs, a;, g) and 7o := coz +t mod q.
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Step 3. Output the pair (h;,a;), (co,70)-

The output of A is a certified public key:

co = HM(hohi, ai,gp)
= H(hohs, ai, go° ")
= H(hohi, ai, 95°(95) ™)
= H(hohi, a;, gg° (hohi) ™).

Since go is a generator of GG, and the numbers in Step 1 are chosen at random, the
output distribution of A is identical to the distribution that applies when certified key

pairs are issued by B. O

In the new approach the secret key is the message, and the certificate is the signature

on the message. But the message is not blinded; it fact, it cannot be blinded.

This falsifies the popular belief that efficient privacy-protecting off-line electronic
cash systems must be based on withdrawal protocols that are special instances of blind
signature issuing protocols. In fact, as some hindsight will reveal, most of the presented
protocol reductions were possible only because of the simulatability that is inherent to

secret-key certificates.

8. CONCLUSION

It has been shown how to construct a privacy-protecting off-line electronic coin system
based on a secret-key certificate scheme, rather than on a public-key certificate scheme.
The new system improves significantly on the efficiency of the system in [3]; the com-
putational effort for blinding an electronic coin is reduced by a factor of about two,
and the on-line computational effort required to withdraw an electronic coin is reduced
to what seems to be the absolute minimum achievable (one modular multiplication).
Furthermore, several important claims have been proved by clean-cut simulations, by
virtue of the simulatability of certified key pairs; such proofs are not known for any

other “practical” privacy-protecting off-line cash system in the literature.

The presented cash system lends itself very well to practical implementation, as I
showed in [5]. Practical optimizations, discussed in [5], ensure that the role of the
tamper-resistant device can be implemented by a smart card with a standard 8-bit
micro-processor, and that the bank needs to store in its deposit database no more

than 50 bytes per payment. A description of how to extend the presented cash system
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such as to provide for electronic cheques, coins of different denominations and anony-
mous accounts, can be found in part (iv) of [4]. Furthermore, in part (v) of [4] it is
shown how to generalize the applied techniques to general privacy-protecting credential

mechanisms.

Finally, a remark of more general interest. A large part of this paper is concen-
trated around the notion of polynomial-time reductions between protocols. Such re-
ductions seem to hardly have been studied in the literature; only polynomial-time
reductions between a protocol and an algorithm (which can be seen as a degenerate,
“non-interactive,” protocol) seem to be widely in use. The formalization of polynomial-
time reductions between protocols (actually, cryptographic schemes, since a scheme also
includes a key generation algorithm) may be a worthwhile area of investigation, since
it can shed light on what criteria a suitable formal model (and terminology) for cryp-
tographic protocols should meet. As a typical example of wrong protocol terminology,
consider the wide-spread use of the terminology “blind signature;” the correct terminol-
ogy in my opinion is “blind signature issuing protocol,” where “blind” modifies “issuing
protocol,” not “signature;” there may be many protocols for issuing a signature, and
some of these may have the property that they issue in a blind way (unlinkability
of views). Furthermore, when describing polynomial-time reductions between crypto-
graphic schemes we have to carefully state the constituent parts of a cryptographic
scheme. For instance, reductions between cryptographic schemes require one key gen-
eration algorithm to be derived from another key generation algorithm; in general,
this will require dissection of key generation algorithms into separate sub-algorithms
(something that we have carefully avoided by assuming independent uniform probabil-
ity distributions, in order not to make the descriptions of the simulated key generation
for the presented proofs unduly complicated). As a part of this reduction between key
generation algorithms, we must carefully state what we decide to call the public key.
In light of this, the presented cash system seems very suitable for a study that aims at

developing a formal model for cryptographic protocols.
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